OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14251–14261

Integrated photonic threshold comparator based on square-wave synthesis

Yossef Ehrlichman, Ofer Amrani, and Shlomo Ruschin  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14251-14261 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2336 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A photonic threshold comparator is presented. A step-like electrical-to-optical (E/O) response is obtained by employing Fourier series synthesis in which a set of sine-wave responses of different amplitudes and phases are superimposed according to the Fourier series representation of a square-wave. The proposed comparator does not rely on optical material non-linearity; rather it consists of multimode interference (MMI) couplers and phase shifters.

© 2013 OSA

OCIS Codes
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(130.3120) Integrated optics : Integrated optics devices
(190.1450) Nonlinear optics : Bistability

ToC Category:
Integrated Optics

Original Manuscript: March 14, 2013
Revised Manuscript: April 18, 2013
Manuscript Accepted: April 19, 2013
Published: June 7, 2013

Yossef Ehrlichman, Ofer Amrani, and Shlomo Ruschin, "Integrated photonic threshold comparator based on square-wave synthesis," Opt. Express 21, 14251-14261 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Taylor, “An optical analog-to-digital converter–design and analysis,” IEEE J. Quantum Electron.15(4), 210–216, (1979). [CrossRef]
  2. H. Chi and J. Yao, “A photonic analog-to-digital conversion scheme using Mach-Zehnder modulators with identical half-wave voltages,” Opt. Express16(2), 567–572 (2008). [CrossRef] [PubMed]
  3. Y. Peng, H. Zhang, Q. Wu, Y. Zhang, X. Fu, and M. Yao, “Experimental Demonstration of all-optical analog-to-digital conversion with balanced detection threshold scheme,” IEEE Photon. Technol. Lett.21(23), 1776–1778, (2009). [CrossRef]
  4. L. Loh and J. LoCicero, “Subnanosecond sampling all-optical analog-to-digital converter using symmetric self-electro-optic effect devices,” SPIE Optical Engineering(35)(2), 457–466 (1995). [CrossRef]
  5. L. Brzozowski and E. Sargent, “All-optical analog-to-digital converters, hardlimiters, and logicgates,” J. of Light-wave Technol.19(1), 114–119, (2001). [CrossRef]
  6. H. Sakata, “Photonic analog-to-digital conversion by use of nonlinear Fabry-Perot resonators,” Applied Optics40(2), 240–248, 2001. [CrossRef]
  7. P. Parolari, L. Marazzi, M. Connen, and M. Martinelli, “SOA based all-optical threshold,” in Conference on Lasers and Electro-Optics (CLEO), 309–310 (2000).
  8. G. Morthier, M. Zhao, B. Vanderhaegen, and R. Baets, “Experimental demonstration of an all-optical 2R regenerator with adjustable decision threshold and True regeneration characteristics,” IEEE Photon. Technol. Lett.12(11), 1516–1518 (2002). [CrossRef]
  9. S. Pereira, P. Chak, J. Sipe, L. Tkeshelashvili, and K. Busch, “All-optical diode in an asymmetrically apodized Kerr nonlinear microresonator system,” Photonics and Nanostructures-Fundamentals and Applications, 2(3), 181–190 (2004). [CrossRef]
  10. B. Maes, P. Bienstman, and R. Baets, “Switching in coupled nonlinear photonic-crystal resonators,” J. Opt. Soc. Am. B, /textbf22(8), 1778–1784 (2005). [CrossRef]
  11. K. Ikeda, J. Abdul, H. Tobioka, T. Inoue, S. Namiki, and K. Kitayama, “Design considerations of all-optical A/D conversion: nonlinear fiber-optic Sagnac-loop unterferometer-based optical quantizing and coding,” J. of Lightwave Technol.24(7), 2618–2628, (2006). [CrossRef]
  12. G.C. Valley, “Photonic analog-to-digital converters,” Opt. Express15(5), 1955–1982 (2007). [CrossRef] [PubMed]
  13. A. Tait, B. Shastri, M. Fok, M. Nahmias, and P. Prucnal, “The DREAM: an integrated photonic thresholder,” J. of Lightwave Technol.31(8), 1263–1272, (2013). [CrossRef]
  14. Y. Ehrlichman, O. Amrani, and S. Ruschin, “Photonic comparator by square-wave synthesis,” in Proceedings of 26th Convention of Electrical and Electronics Engineers in Israel (IEEEI)(IEEE2010), pp. 395–397.
  15. L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications”, J. of Lightwave Technol.13(4), 615–627 (1995). [CrossRef]
  16. J. Yu, H. Wei, X. Zhang, Q. Yan, and J. Xia, “Integrated MMI optical couplers and optical switches in silicon-on-insulator technology,” Proc. SPIE4582, 57–62 (2001). [CrossRef]
  17. N.S. Lagali, M.R. Paiam, R.I. MacDonald, K. Rhoff, and A. Driessen, “Analysis of generalized Mach-Zehnder interferometers for variable-ratio power splitting and optimized switching,” J. of Lightwave Technol.17(12), 2542–2550 (1999). [CrossRef]
  18. C. Toumazou, G. Moschytz, and B. Gilbert, Trade-offs in analog circuit design: the designer’s companion(Kluwer Academic Publishing2002). [CrossRef]
  19. M. Madhavilatha, G.L. Madhumati, and K.R.K. Rao, “Design of CMOS comparator for flash ADC,” International Journal of Electronics Engineering, 1(1), 53–57 (2009).
  20. N. Lagali, M. Paiam, and R. MacDonald, “Theory of variable-ratio power splitters using multimode interference couplers,” IEEE Photon. Technol. Lett.11(6), 665–667, (1999). [CrossRef]
  21. G. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nature photonics4(8), 518–526 (2010). [CrossRef]
  22. S. Niwa, S. Matsuo, T. Kakitsuka, and K. Kitayama, “Experimental demonstration of 1×4 InP/InGAsP optical integrated multimode interference waveguide switch,” in 20th International Conference on Indium Phosphide and Related Materials (IPRM)(IEEE2008), pp. 1–4.
  23. K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, R. Iga, Y. Kondo, and Y. Tohmori, “40 Gbit/s n-i-n InP Mach-Zehnder modulator with a π voltage of 2.2V,” IET Electronics Letters39(20), 1464–1466 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited