OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14282–14290

Surface enhanced Raman scattering and plasmon enhanced fluorescence in zinc-tellurite glass

Raja J. Amjad, M. R. Sahar, M. R. Dousti, S. K. Ghoshal, and M. N. A. Jamaludin  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14282-14290 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1412 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report significant enhancements in Er3+ luminescence as well as in Raman intensity in silver nanoparticles embedded zinc-tellurite glass. Surface enhanced Raman scattering effect is highlighted for the first time in tellurite glass containing silver NPs resulting in an enhanced Raman signal (~10 times). SAED manifest the growth of Ag0 nanoparticles along the (111) and (200) crystallographic planes having average diameter in the range 14-36 nm. Surface plasmon resonance bands are observed in the range 484-551 nm. Furthermore, four prominent photoluminescence bands undergo significant enhancements up to 3 times. The enhancement is majorly attributed to the local field effect of silver NPs.

© 2013 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(240.6680) Optics at surfaces : Surface plasmons
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Optics at Surfaces

Original Manuscript: February 15, 2013
Revised Manuscript: April 4, 2013
Manuscript Accepted: April 16, 2013
Published: June 7, 2013

Raja J. Amjad, M. R. Sahar, M. R. Dousti, S. K. Ghoshal, and M. N. A. Jamaludin, "Surface enhanced Raman scattering and plasmon enhanced fluorescence in zinc-tellurite glass," Opt. Express 21, 14282-14290 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett.71(9), 1198–1200 (1997). [CrossRef]
  2. S. Moon, P. R. Watekar, B. H. Kim, and W. T. Han, “Fabrication and photoluminescence characteristics of Er3+-doped optical fibre sensitised by silicon,” Electron. Lett.43(2), 85–87 (2007). [CrossRef]
  3. S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W. T. Han, “Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles,” J. Nanosci. Nanotechnol.6(11), 3555–3558 (2006). [CrossRef] [PubMed]
  4. M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, and A. J. Bruce, “Spectroscopic properties of Er3+ and Yb3+doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B56(15), 9302–9318 (1997). [CrossRef]
  5. C. Strohhofer and A. Polman, “Silver as a sensitizer for erbium,” Appl. Phys. Lett.81(8), 1414–1416 (2002). [CrossRef]
  6. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005). [CrossRef]
  7. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  8. C. D. Geddes and J. R. Lakowicz, “Editorial: Metal-enhanced fluorescence,” J. Fluoresc.12(2), 121–129 (2002). [CrossRef] [PubMed]
  9. K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol.16(1), 55–62 (2005). [CrossRef] [PubMed]
  10. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3-4), 131–314 (2005). [CrossRef]
  11. J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem.298(1), 1–24 (2001). [CrossRef] [PubMed]
  12. J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem.301(2), 261–277 (2002). [CrossRef] [PubMed]
  13. E. B. Desurvire, “Capacity demand and technology challenges for lightwave systems in the next two decades,” J. Lightwave Technol.24(12), 4697–4710 (2006). [CrossRef]
  14. J. A. García-Macedo, G. Valverde, J. Lockard, and J. I. Zink, “SERS on mesostructured thin films with silver nanoparticles,” Proc. SPIE5361, 117–124 (2004). [CrossRef]
  15. D. Roy, Z. H. Barber, and T. W. Clyne, “Ag nanoparticle induced surface enhanced Raman spectroscopy of chemical vapor deposition diamond thin films prepared by hot filament chemical vapor deposition,” J. Appl. Phys.91(9), 6085–6088 (2002). [CrossRef]
  16. F. Gonella and P. Mazzoldi, “Metal nanocluster composite glasses,” in Handbook of Nanostructured Materials and Nanotechnology, Nalwa HS (Ed), vol 4. (Academic, 2000).
  17. T. Som and B. Karmakar, “Core shell Au Ag Nanoparticles in Dielectric Nanocomposites with Plasmon-Enhanced Fluorescence: A New Paradigm in Antimony Glasses,” Nano Res.2(8), 607–616 (2009). [CrossRef]
  18. T. Som and B. Karmakar, “Surface Plasmon Resonance and Enhanced Fluorescence Application of Single-Step Synthesized Elliptical Nano Gold-embedded Antimony Glass Dichroic Nanocomposites,” Plasmonics5(2), 149–159 (2010). [CrossRef]
  19. T. Sekiya, N. Mochida, A. Ohtsuka, and A. Soejima, “Raman spectra of BO3/2-TeO2 glasses,” J. Non-Cryst. Solids151(3), 222–228 (1992). [CrossRef]
  20. T. Komatsu, H. Tawarayama, H. Mohri, and K. Matusita, “Properties and crystallization behaviors of TeO2-LiNbO3 glasses,” J. Non-Cryst. Solids135(2-3), 105–113 (1991). [CrossRef]
  21. K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals,” J. Appl. Phys.97(12), 124313 (2005). [CrossRef]
  22. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26(2), 163–166 (1974). [CrossRef]
  23. E. Nardou, D. Vouagner, A.-M. Jurdyc, A. Berthelot, A. Pillonnet, V. Sablonière, F. Bessueille, and B. Champagnon, “Surface enhanced Raman scattering in an amorphous matrix for Raman amplification,” J. Non-Cryst. Solids357(8-9), 1895–1899 (2011). [CrossRef]
  24. K. Kneipp, “Surface-enhanced Raman scattering,” Phys. Today, 40–46 (2007).
  25. M. K. Hossain and Y. Ozaki, “Surface-enhanced Raman scattering: facts and inline trends,” Curr. Sci.97, 192–201 (2009).
  26. A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121(43), 9932–9939 (1999). [CrossRef]
  27. P. Etchegoin, H. Liem, R. C. Maher, L. F. Cohen, R. J. C. Brown, H. Hartigan, M. J. T. Milton, and J. C. Gallop, “A novel amplification mechanism for surface enhanced Raman scattering,” Chem. Phys. Lett.366(1-2), 115–121 (2002). [CrossRef]
  28. A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” Condens. Matter.4(5), 1143–1212 (1992). [CrossRef]
  29. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  30. R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, A. R. Samavati, R. Arifin, and S. Naseem, “Annealing time dependent up-conversion luminescence enhancement in magnesium–tellurite glass,” J. Lumin.136, 145–149 (2013). [CrossRef]
  31. R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, and B. A. Tahir, “Enhanced infrared to visible upconversion emission in Er3+ doped phosphate glass: Role of silver nanoparticle,” J. Lumin.132(10), 2714–2718 (2012). [CrossRef]
  32. L. R. P. Kassab, C. B. de Araújo, R. A. Kobayashi, R. D. De, A. Pinto, and D. M. da Silva, “Influence of silver nanoparticles in the luminescence efficiency of Pr3+-doped tellurite glasses,” J. Appl. Phys.102, 103515 (2007).
  33. L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. de Araújo, “Energy transfer and frequency upconversion in Yb3+–Er3+-doped PbO- GeO2 glass containing silver nanoparticles,” Appl. Phys. B94(2), 239–242 (2009). [CrossRef]
  34. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008). [CrossRef] [PubMed]
  35. O. L. Malta and M. A. dos Santos, “Theoretical analysis of the fluorescence yield of rare earth ions in glasses containing small metallic particles,” Chem. Phys. Lett.174(1), 13–18 (1990). [CrossRef]
  36. T. Hayakawa, S. T. Selvan, and M. Nogami, “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett.74(11), 1513–1515 (1999). [CrossRef]
  37. C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence: Potential applications in HTS,” Comb. Chem. High Throughput Screen.6(2), 109–117 (2003). [CrossRef] [PubMed]
  38. J. Zhu, “SPR induced quenching of the 5D1→7F1 emission of Eu3+ doped gold colloids,” Phys. Lett. A341(1-4), 212–215 (2005). [CrossRef]
  39. E. G. Matveeva, T. Shtoyko, I. Gryczynski, I. Akopova, and Z. Gryczynski, “Fluorescence quenching/enhancement surface assays: Signal manipulation using silver-coated gold nanoparticles,” Chem. Phys. Lett.454(1-3), 85–90 (2008). [CrossRef] [PubMed]
  40. T. Som and B. Karmakar, “Nanosilver enhanced upconversion fluorescence of erbium ions in Er3+: Ag-antimony glass nanocomposites,” J. Appl. Phys.105(1), 013102 (2009). [CrossRef]
  41. V. A. G. Rivera, S. P. A. Osorio, Y. Ledemi, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Localized surface plasmon resonance interaction with Er3+-doped tellurite glass,” Opt. Express18(24), 25321–25328 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited