OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14291–14302

Crack-free conditions in welding of glass by ultrashort laser pulse

Isamu Miyamoto, Kristian Cvecek, and Michael Schmidt  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14291-14302 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3203 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The spatial distribution of the laser energy absorbed by nonlinear absorption process in bulk glass w(z) is determined and thermal cycles due to the successive ultrashort laser pulse (USLP) is simulated using w(z) based on the transient thermal conduction model. The thermal stress produced in internal melting of bulk glass by USLP is qualitatively analyzed based on a simple thermal stress model, and crack-free conditions are studied in glass having large coefficient of thermal expansion. In heating process, cracks are prevented when the laser pulse impinges into glass with temperatures higher than the softening temperature of glass. In cooling process, shrinkage stress is suppressed to prevent cracks, because the embedded molten pool produced by nonlinear absorption process behaves like an elastic body under the compressive stress field unlike the case of CW-laser welding where the molten pool having a free surface produced by linear absorption process is plastically deformed under the compressive stress field.

© 2013 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.3440) Lasers and laser optics : Laser-induced breakdown
(140.7090) Lasers and laser optics : Ultrafast lasers
(160.2750) Materials : Glass and other amorphous materials
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 22, 2013
Revised Manuscript: April 6, 2013
Manuscript Accepted: April 10, 2013
Published: June 7, 2013

Isamu Miyamoto, Kristian Cvecek, and Michael Schmidt, "Crack-free conditions in welding of glass by ultrashort laser pulse," Opt. Express 21, 14291-14302 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  2. M. Watanabe, H. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” Jpn. J. Appl. Phys.37(Part 2, No. 12B), L1527–L1530 (1998). [CrossRef]
  3. C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process.84(1-2), 47–61 (2006). [CrossRef]
  4. T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys.44(22), L687–L689 (2005). [CrossRef]
  5. I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro Nanoeng.2(1), 57–63 (2007). [CrossRef]
  6. S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process.103(2), 257–261 (2011). [CrossRef]
  7. I. Miyamoto, A. Horn, and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser MicroNanoeng.2(1), 7–14 (2007). [CrossRef]
  8. I. Miyamoto, K. Cvecek, Y. Okamoto, M. Schmidt, and H. Helvajian, “Characteristics of laser absorption and welding in FOTURAN glass by ultrashort laser pulses,” Opt. Express19(23), 22961–22973 (2011). [CrossRef] [PubMed]
  9. S. Wu, D. Wu, J. Xu, Y. Hanada, R. Suganuma, H. Wang, T. Makimura, K. Sugioka, and K. Midorikawa, “Characterization and mechanism of glass microwelding by double-pulse ultrafast laser irradiation,” Opt. Express20(27), 28893–28905 (2012). [CrossRef] [PubMed]
  10. M. Levesque, B. Labrnche, R. Forest, E. Savard, S. Deshaies, and A. Cournoyer, “Welding of glass pieces,” Physics Procedia5, 139–144 (2010). [CrossRef]
  11. I. Miyamoto, K. Cvecek, and M. Schmidt, “Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses,” Opt. Express19(11), 10714–10727 (2011). [CrossRef] [PubMed]
  12. K. Cvecek, I. Miyamoto, J. Strauss, M. Wolf, T. Frick, and M. Schmidt, “Sample preparation method for glass welding by ultrashort laser pulses yields higher seam strength,” Appl. Opt.50(13), 1941–1944 (2011). [CrossRef] [PubMed]
  13. W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett.89, 021106 (2006).
  14. Y. Arata, H. Maruo, I. Miyamoto, and S. Tackuchi, “Dynamic behavior of laser welding and cutting,” Proc Symp. Electron and ion beam Science and technologies, 7th Int. Conf. 111–128 (1976)
  15. M. Watanabe and K. Satoh, Welding Mechanics and its Applications (Asakura, 1965), Chap. 8.
  16. T. Terasaki, “Welding distortion and residual stress,” J. Jpn. Welding Soc.78, 139–146 (2009).
  17. D. O. MacCallum, G. A. Knorovsky, and S. T. Reed, “CO2 laser welding fused silica,” Proc. 24th Int. Cong. on Application of Lasers and Electro-Optics (ICALEO) 687–695 (2005)
  18. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.87(1), 014104 (2005). [CrossRef]
  19. Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett.34(2), 136–138 (2009). [CrossRef] [PubMed]
  20. A. E. Siegman and S. W. Townsend, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron.29(4), 1212–1217 (1993). [CrossRef]
  21. Y. R. Shen, The Principles of Nonlinear Optics (John Wiley and Sons, 1984), Chap. 27.
  22. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: Calculation of thresholds, absorption coefficients and energy density,” IEEE J. Quantum Electron.35(8), 1156–1167 (1999). [CrossRef]
  23. C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express15(16), 10303–10317 (2007). [CrossRef] [PubMed]
  24. I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, I. Mingareev, F. Yoshino, M. Schmidt, Y. Okamoto, Y. Uno, and T. Hermann, “Novel fusion welding technology of glass using ultrashort pulse lasers,” Proc. 27th International Congress on Applications of Lasers and Electro-Optics (ICALEO) 112–121 (2010). [CrossRef]
  25. C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett.84(9), 1441–1443 (2004). [CrossRef]
  26. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13(12), 4708–4716 (2005). [CrossRef] [PubMed]
  27. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Ultrafast laser processing: new options for three-dimensional photonic structures,” J. Mod. Opt.51(16-18), 2533–2542 (2004). [CrossRef]
  28. M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett.93(23), 231112 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited