OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14377–14387

Asymmetric superradiant scattering and abnormal mode amplification induced by atomic density distortion

Zhongkai Wang, Linxiao Niu, Peng Zhang, Mingxuan Wen, Zhen Fang, Xuzong Chen, and Xiaoji Zhou  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14377-14387 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (982 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The superradiant Rayleigh scattering using a pump laser incident along the short axis of a Bose-Einstein condensate with a density distortion is studied, where the distortion is formed by shocking the condensate utilizing the residual magnetic force after the switching-off of the trapping potential. We find that very small variation of the atomic density distribution would induce remarkable asymmetrically populated scattering modes by the matter-wave superradiance with long time pulse. The optical field in the diluter region of the atomic cloud is more greatly amplified, which is not an ordinary mode amplification with the previous cognition. Our numerical simulations with the density envelop distortion are consistent with the experimental results. This supplies a useful method to reflect the geometric symmetries of the atomic density profile by the superradiance scattering.

© 2013 OSA

OCIS Codes
(270.6630) Quantum optics : Superradiance, superfluorescence
(290.5870) Scattering : Scattering, Rayleigh
(020.1475) Atomic and molecular physics : Bose-Einstein condensates

ToC Category:
Atomic and Molecular Physics

Original Manuscript: April 8, 2013
Revised Manuscript: May 24, 2013
Manuscript Accepted: May 25, 2013
Published: June 10, 2013

Zhongkai Wang, Linxiao Niu, Peng Zhang, Mingxuan Wen, Zhen Fang, Xuzong Chen, and Xiaoji Zhou, "Asymmetric superradiant scattering and abnormal mode amplification induced by atomic density distortion," Opt. Express 21, 14377-14387 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, J. Stenger, D. E. Pritchard, and W. Ketterle, “Superradiant Rayleigh scattering from a Bose-Einstein condensate,” Science285, 571–574 (1999). [CrossRef] [PubMed]
  2. D. Schneble, Y. Torii, M. Boyd, E. W. Streed, D. E. Pritchard, and W. Ketterle, “The onset of matter-wave amplification in a superradiant Bose-Einstein condensate,” Science300, 475–478 (2003). [CrossRef] [PubMed]
  3. M. Kozuma, Y. Suzuki, Y. Torii, T. Sugiura, T. Kuga, E. W. Hagley, and L. Deng, “Phase-coherent amplipcation of matter waves,” Science286, 2309–2312 (1999). [CrossRef] [PubMed]
  4. Y. Yoshikawa, Y. Torii, and T. Kuga, “Superradiant light scattering from thermal atomic vapors,” Phys. Rev. Lett.94, 083602 (2005). [CrossRef] [PubMed]
  5. Y. Yoshikawa, K. Nakayama, Y. Torii, and T. Kuga, “Holographic storage of multiple coherence gratings in a Bose-Einstein condensate,” Phys. Rev. Lett.99, 220407 (2007). [CrossRef]
  6. L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore, and D. M. Stamper-Kurn, “Coherence-enhanced imaging of a degenerate Bose-Einstein gas,” Phys. Rev. Lett.98, 110401 (2007). [CrossRef] [PubMed]
  7. F. Yang, X. J. Zhou, J. T. Li, Y. K Chen, L. Xia, and X. Z. Chen, “Resonant sequential scattering in two-frequency-pumping superradiance from a Bose-Einstein condensate,” Phys. Rev. A78, 043611 (2008). [CrossRef]
  8. L. Deng, E. W. Hagley, Q. Cao, X. Wang, X. Luo, R. Wang, M. G. Payne, F. Yang, X. Zhou, X. Chen, and M. Zhan, “Observation of a red-blue detuning asymmetry in matter-wave superradiance,” Phys. Rev. Lett.105, 220404 (2010). [CrossRef]
  9. N. S. Kampel, A. Griesmaier, M. P. Hornbak Steenstrup, F. Kaminski, E. S. Polzik, and J. H. Müller, “The effect of light assisted collisions on matter wave coherence in superradiant Bose-Einstein condensates,” Phys. Rev. Lett.108, 090401 (2012). [CrossRef] [PubMed]
  10. A. Hilliard, F. Kaminski, R. le Targat, C. Olausson, E. S. Polzik, and J. H. Müller, “Rayleigh superradiance and dynamic Bragg gratings in an end-pumped Bose-Einstein condensate,” Phys. Rev. A78, 051403(R) (2008). [CrossRef]
  11. L. Fallani, C. Fort, N. Piovella, M. Cola, F. S. Cataliotti, M. Inguscio, and R. Bonifacio, “Collective atomic recoil in a moving Bose-Einstein condensate: from superradiance to Bragg scattering,” Phys. Rev. A71, 033612 (2005). [CrossRef]
  12. N. Bar-Gill, E. E. Rowen, and N. Davidson, “Spectroscopy of strong-pulse superradiance in a Bose-Einstein condensate,” Phys. Rev. A76, 043603 (2007). [CrossRef]
  13. X. J. Zhou, F. Yang, X. G. Yue, T. Vogt, and X. Z. Chen, “Imprinting light phase on matter-wave gratings in superradiance scattering,” Phys. Rev. A81, 013615 (2010). [CrossRef]
  14. M. G. Moore and P. Meystre, “Theory of superradiant scattering of laser light from Bose-Einstein condensates,” Phys. Rev. lett.83, 5202–5205 (1999). [CrossRef]
  15. H. Pu, W. Zhang, and P. Meystre, “Wave mixing of optical pulses and Bose-Einstein condensates,” Phys. Rev. lett.91, 150407 (2003). [CrossRef] [PubMed]
  16. O. Zobay and G. M. Nikolopoulos, “Spatial effects in superradiant Rayleigh scattering from Bose-Einstein condensates,” Phys. Rev. A73, 013620 (2006). [CrossRef]
  17. H. Uys and P. Meystre, “Cooperative scattering of light and atoms in ultracold atomic gases,” Laser Phys. Lett.5, 487 (2008). [CrossRef]
  18. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414, 413–418 (2001). [CrossRef] [PubMed]
  19. B. Lu, X. J. Zhou, T. Vogt, Z. Fang, and X. Z. Chen, “Laser driving of superradiant scattering from a Bose-Einstein condensate at variable incidence angle,” Phys. Rev. A83, 033620 (2011). [CrossRef]
  20. M. R. Andrews, M.-O. Mewes, N. J. Druten, and D. S. Durfee, Direct, “Nondestructive observation of a Bose condensate,” Science273, 84–87 (1996). [CrossRef] [PubMed]
  21. N. Gemelke, X. Zhang, C. L. Hung, and C. Chin, “In situ observation of incompressible Mott-insulating domains in ultracold atomic gases,” Nature460, 995–998 (2009). [CrossRef] [PubMed]
  22. N. Katz, J. Steinhauer, R. Ozeri, and N. Davidson, “Beliaev damping of quasiparticles in a Bose-Einstein condensate,” Phys. Rev. Lett.89, 220401 (2002). [CrossRef] [PubMed]
  23. P. R. Berman, “Comparison of recoil-induced resonances and the collective atomic recoil laser,” Phys. Rev. A59, 585 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited