OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14409–14429

Discontinuous electromagnetic fields using orthogonal electric and magnetic currents for wavefront manipulation

Michael Selvanayagam and George V. Eleftheriades  »View Author Affiliations


Optics Express, Vol. 21, Issue 12, pp. 14409-14429 (2013)
http://dx.doi.org/10.1364/OE.21.014409


View Full Text Article

Enhanced HTML    Acrobat PDF (6275 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce the idea of discontinuous electric and magnetic fields at a boundary to design and shape wavefronts in an arbitrary manner. To create this discontinuity in the field we use orthogonal electric and magnetic currents which act like Huygens source to radiate the desired wavefront. These currents can be synthesized either by an array of electric and magnetic dipoles or by a combined impedance and admittance surface. A dipole array is an active implementation to impose discontinuous fields while the impedance/admittance surface acts as a passive one. We then expand on our previous work showing how electric and magnetic dipole arrays can be used to cloak an object demonstrating novel cloaking and anti-cloaking schemes. We also show how to arbitrarily refract a beam using a set of impedance and admittance surfaces. Refraction using the idea of discontinuous fields is shown to be a more general case of refraction than using simple phase discontinuities.

© 2013 OSA

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(350.4010) Other areas of optics : Microwaves
(350.5500) Other areas of optics : Propagation
(350.7420) Other areas of optics : Waves
(160.1245) Materials : Artificially engineered materials
(160.3918) Materials : Metamaterials
(230.3205) Optical devices : Invisibility cloaks
(290.5839) Scattering : Scattering, invisibility

ToC Category:
Physical Optics

History
Original Manuscript: April 9, 2013
Revised Manuscript: May 25, 2013
Manuscript Accepted: May 25, 2013
Published: June 10, 2013

Citation
Michael Selvanayagam and George V. Eleftheriades, "Discontinuous electromagnetic fields using orthogonal electric and magnetic currents for wavefront manipulation," Opt. Express 21, 14409-14429 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-12-14409


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Selvanayagam and G. V. Eleftheriades, “An active electromagnetic cloak based on the equivalence principle,” IEEE Antennas and Wireless Propagation Letters11, 1226–1229 (2012). [CrossRef]
  2. C. G. M. Ryan, M. Chaharmir, J. Shaker, J. Bray, Y. M. M. Antar, and A. Ittipiboon, “A wideband transmitarray using dual-resonant double square rings,” IEEE Transactions on Antennas and Propagation58, 1486–1493 (2010). [CrossRef]
  3. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley-Interscience, 2005).
  4. B. Munk, Frequency Selective Surfaces: Theory and Design (Wiley-Interscience, 2000). [CrossRef]
  5. R. F. Harrington, Time-Harmonic Electromagnetic Fields (Wiley-Interscience, 2001). [CrossRef]
  6. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005), 3rd ed.
  7. J.-P. Berenger, “A Huygens subgridding for the FDTD method,” IEEE Trans. on Antennas and Propagation54, 3797–3804 (2006). [CrossRef]
  8. R. C. Hansen, Phased Array Antennas (Wiley-Interscience, 2009). [CrossRef]
  9. D.-H. Kwon and D. M. Pozar, “Optimal characteristics of an arbitrary receive antenna,” IEEE Transactions on Antennas and Propagation57, 3720–3727 (2009). [CrossRef]
  10. A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems (Prentice Hall, 1997).
  11. S. Tretyakov, Analytical Modeling in Applied Electromagnets (Artech House, 2003).
  12. A. Grbic and R. Merlin, “Near-field focusing plates and their design,” IEEE Transactions on Antennas and Propagation56, 3159–3165 (2008). [CrossRef]
  13. H. Chen, X. Luo, H. Ma, and C. Chan, “The anti-cloak,” Opt. Express16, 14603–14608 (2008). [CrossRef] [PubMed]
  14. I. Gallina, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “General class of metamaterial transformation slabs,” Phys. Rev. B81, 125124 (2010). [CrossRef]
  15. W. C. Gibson, The Method of Moments in Electromagnetics (Chapman and Hall/CRC, 2008).
  16. J. Du, S. Liu, and Z. Lin, “Broadband optical cloak and illusion created by the low order active sources,” Opt. Express20, 8608–8617 (2012). [CrossRef] [PubMed]
  17. D. A. Miller, “On perfect cloaking,” Opt. Express14, 12457–12466 (2006). [CrossRef] [PubMed]
  18. F. G. Vasquez, G. W. Milton, and D. Onofrei, “Active exterior cloaking for the 2D Laplace and Helmholtz equations,” Phys. Rev. Lett.103, 073901 (2009). [CrossRef] [PubMed]
  19. J. Lau and S. Hum, “Reconfigurable transmitarray design approaches for beamforming applications,” IEEE Transactions on Antennas and Propagation60, 5679–5689 (2012). [CrossRef]
  20. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011). [CrossRef] [PubMed]
  21. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science339(2013). [CrossRef] [PubMed]
  22. Y.-J. Tsai, S. Larouche, T. Tyler, G. Lipworth, N. M. Jokerst, and D. R. Smith, “Design and fabrication of a metamaterial gradient index diffraction grating at infrared wavelengths,” Opt. Express19, 24411–24423 (2011). [CrossRef] [PubMed]
  23. H. Steyskal, A. Hessel, and J. Shmoys, “On the gain-versus-scan trade-offs and the phase gradient synthesis for a cylindrical dome antenna,” IEEE Trans. on Antennas and PropagationAP-27, 825–831 (1979). [CrossRef]
  24. M. Born and E. Wolf, Principle of Optics (Cambridge University, 1999), 7th ed.
  25. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express14, 9794–9804 (2006). [CrossRef] [PubMed]
  26. A. Alú and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” Journal of Optics A: Pure and Applied Optics10, 093002 (2008). [CrossRef]
  27. D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Transactions on Microwave Theory and Techniques47, 2059–2074 (1999). [CrossRef]
  28. N. Engheta, “Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials,” Science317, 1698–1702 (2007). [CrossRef] [PubMed]
  29. L. Novotny and N. van Hulst, “Antennas for light,” Nature Photonics5, 83–90 (2011). [CrossRef]
  30. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature493, 195–199 (2013). [CrossRef] [PubMed]
  31. C. Pfieffer and A. Grbic, “Metamaterial huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett.110, 197401 (2013). [CrossRef]
  32. F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett.110, 203903 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited