OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14430–14441

The transport of intensity equation for optical path length recovery using partially coherent illumination

Jonathan C. Petruccelli, Lei Tian, and George Barbastathis  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14430-14441 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1467 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the measurement of a thin sample’s optical thickness using the transport of intensity equation (TIE) and demonstrate a version of the TIE, valid for partially coherent illumination, that allows the measurement of a sample’s optical path length by the removal of illumination effects.

© 2013 OSA

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(100.5070) Image processing : Phase retrieval
(110.4980) Imaging systems : Partial coherence in imaging
(350.5030) Other areas of optics : Phase

ToC Category:
Image Processing

Original Manuscript: April 10, 2013
Revised Manuscript: May 24, 2013
Manuscript Accepted: May 27, 2013
Published: June 10, 2013

Virtual Issues
July 12, 2013 Spotlight on Optics

Jonathan C. Petruccelli, Lei Tian, and George Barbastathis, "The transport of intensity equation for optical path length recovery using partially coherent illumination," Opt. Express 21, 14430-14441 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt.21, 2758–2769 (1982). [CrossRef] [PubMed]
  2. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. A73, 1434–1441 (1983). [CrossRef]
  3. E. Madelung, “Quantentheorie in hydrodynamische Form,”Z. für Phys.40, 322–326 (1926). [CrossRef]
  4. D. Bohm, “A suggested interpretation of the quantum theory in terms of “hidden” variables. I,” Phys. Rev.85, 166–179 (1952). [CrossRef]
  5. D. Paganin and K. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett.80, 2586–2589 (1998). [CrossRef]
  6. T. E. Gureyev, A. Roberts, and K. A. Nugent, “Phase retrieval with the transport-of-intensity equation: matrix solution with use of Zernike polynomials,” J. Opt. Soc. Am. A12, 1932–1941 (1995). [CrossRef]
  7. K. Ishizuka and B. Allman, “Phase measurement of atomic resolution image using transport of intensity equation,” J. Electron Microsc., 54191–197 (2005). [CrossRef]
  8. T. C. Petersen, V. Keast, K. Johnson, and S. Duvall, “TEM based phase retrieval of p-n junction wafers using the transport of intensity equation,” Phil. Mag.87, 3565–3578 (2007). [CrossRef]
  9. L. Waller, L. Tian, and G. Barbastathis, “Transport of intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express18, 12552–12561 (2010). [CrossRef] [PubMed]
  10. C. Zuo, Q. Chen, Y. Yu, and A. Asundi, “Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter–theory and applications,” Opt. Express21, 5346–5362 (2013). [CrossRef] [PubMed]
  11. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384, 335–338 (1996). [CrossRef]
  12. K. Nugent, T. Gureyev, D. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard X-rays,” Phys. Rev. Lett.77, 2961–2964 (1996). [CrossRef] [PubMed]
  13. T. C. Petersen, V. J. Keast, and D. M. Paganin, “Quantitative TEM-based phase retrieval of MgO nano-cubes using the transport of intensity equation,” Ultramicroscopy108, 805–815 (2008). [CrossRef] [PubMed]
  14. B. E. Allman, P. J. McMahon, K. A. Nugent, D. Paganin, D. L. Jacobson, M. Arif, and S. A. Werner, “Phase radiography with neutrons,” Nature408, 158–159 (2000). [CrossRef] [PubMed]
  15. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995). Ch. 4. [CrossRef]
  16. T. E. Gureyev, D. M. Paganin, A. W. Stevenson, S. C. Mayo, and S. W. Wilkins, “Generalized eikonal of partially coherent beams and its use in quantitative imaging,” Phys. Rev. Lett.93, 068103 (2004). [CrossRef] [PubMed]
  17. A. M. Zysk, P. S. Carney, and J. C. Schotland, “Eikonal method for calculation of coherence functions,” Phys. Rev. Lett.95, 043904 (2005). [CrossRef] [PubMed]
  18. A. M. Zysk, R. W. Schoonover, P. S. Carney, and M. A. Anastasio, “Transport of intensity and spectrum for partially coherent fields,” Opt. Lett.35, 2239–2241 (2010). [CrossRef] [PubMed]
  19. T. E. Gureyev, Y. I. Nesterets, D. M. Paganin, A. Pogany, and S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region. 2. Partially coherent illumination,” Opt. Commun.259, 569–580 (2006). [CrossRef]
  20. K. A. Nugent, “Wave field determination using three–dimensional intensity information,” Phys. Rev. Lett.68, 2261–2264 (1992). [CrossRef] [PubMed]
  21. M. G. Raymer, M. Beck, and D. F. McAlister, “Complex wave-field reconstruction using phase-space tomography,” Phys. Rev. Lett.72, 1137–1140 (1994). [CrossRef] [PubMed]
  22. L. Tian, J. Lee, S. B. Oh, and G. Barbastathis, “Experimental compressive phase space tomography,” Opt. Express20, 8296–8308 (2012). [CrossRef] [PubMed]
  23. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995), Sec. 5.7.1. [CrossRef]
  24. N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun.49, 6–10 (1984). [CrossRef]
  25. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995), pp. 188–193.
  26. T. Gureyev and K. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun.133, 339–346 (1997). [CrossRef]
  27. D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. of Microscopy214, 51–61 (2004). [CrossRef]
  28. L. Tian, J. C. Petruccelli, and G. Barbastathis, “Nonlinear diffusion regularization for transport of intensity phase imaging,” Opt. Lett.37, 4131–4133 (2012). [CrossRef] [PubMed]
  29. J. Petruccelli, L. Tian, and G. Barbastathis, “Source diversity for transport of intensity phase imaging,” to appear in to Computational Optical Sensing and Imaging (Optical Society of America, 2013), June2013, paper CTu2C.3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited