OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14442–14451

Optical quasi logic gates based on polarization-dependent four-wave mixing in subwavelength metallic waveguides

Lujun Wang, Lianshan Yan, Yinghui Guo, Kunhua Wen, Wei Pan, and Bin Luo  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14442-14451 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (950 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



All-optical quasi logic gates are demonstrated by means of polarization-dependent four-wave mixing (FWM) in metal-insulator-metal (MIM) waveguides filled with a Kerr nonlinear medium. By using finite-difference-time-domain (FDTD) methods, we perform a quantitative comparison of the FWM efficiency associated with different pump polarization states. By manipulating the core thickness and the polarization properties of the pump and signals, all-optical NOT, NAND, NOR, and NXOR logical functions are obtained.

© 2013 OSA

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(230.7390) Optical devices : Waveguides, planar
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

ToC Category:
Optics in Computing

Original Manuscript: April 12, 2013
Revised Manuscript: May 31, 2013
Manuscript Accepted: May 31, 2013
Published: June 10, 2013

Lujun Wang, Lianshan Yan, Yinghui Guo, Kunhua Wen, Wei Pan, and Bin Luo, "Optical quasi logic gates based on polarization-dependent four-wave mixing in subwavelength metallic waveguides," Opt. Express 21, 14442-14451 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Jung, C. Son, S. Lee, S. Gil, H. Kim, and N. Park, “Demonstration of 10 Gbps, all-optical encryption and decryption system utilizing SOA XOR logic gates,” Opt. Quantum Electron.40(5-6), 425–430 (2008). [CrossRef]
  2. A. Poustie, R. J. Manning, A. E. Kelly, and K. J. Blow, “All-optical binary counter,” Opt. Express6(3), 69–74 (2000). [CrossRef] [PubMed]
  3. A. G. Rahbar, “Review of dynamic impairment-aware routing and wavelength assignment techniques in all-optical wavelength-routed networks,” IEEE Commun. Surveys Tutorials14(4), 1065–1089 (2012). [CrossRef]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  5. Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett.12(11), 5784–5790 (2012). [CrossRef] [PubMed]
  6. Y. Liu and J. Kim, “Plasmonic modulation and switching via combined utilization of Young interference and metal-insulator-metal waveguide coupling,” J. Opt. Soc. Am. B28(11), 2712–2717 (2011). [CrossRef]
  7. Z. Chen, J. Chen, Y. Li, D. Pan, W. Lu, Z. Hao, J. Xu, and Q. Sun, “Simulation of nanoscale multifunctional interferometric logic gates based on coupled metal gap waveguides,” IEEE Photon. Technol. Lett.24(16), 1366–1368 (2012). [CrossRef]
  8. K. Song and P. Mazumder, “Dynamic terahertz spoof surface Plasmon-polariton switch based on resonance and absorption,” IEEE Trans. Electron. Dev.58(7), 2172–2176 (2011). [CrossRef]
  9. Y. Tian, L. Zhang, and L. Yang, “Electro-optic directed AND/NAND logic circuit based on two parallel microring resonators,” Opt. Express20(15), 16794–16800 (2012). [CrossRef]
  10. L. Zhang, J. Ding, Y. Tian, R. Ji, L. Yang, H. Chen, P. Zhou, Y. Lu, W. Zhu, and R. Min, “Electro-optic directed logic circuit based on microring resonators for XOR/XNOR operations,” Opt. Express20(11), 11605–11614 (2012). [CrossRef] [PubMed]
  11. H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett.11(2), 471–475 (2011). [CrossRef] [PubMed]
  12. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012). [CrossRef]
  13. Z. J. Zhong, Y. Xu, S. Lan, Q. F. Dai, and L. J. Wu, “Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media,” Opt. Express18(1), 79–86 (2010). [CrossRef] [PubMed]
  14. C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Optical bistability in subwavelength metallic grating coated by nonlinear material,” Opt. Express15(19), 12368–12373 (2007). [CrossRef] [PubMed]
  15. J. A. Porto, L. Martín-Moreno, and F. J. García-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B70(8), 081402 (2004). [CrossRef]
  16. G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett.97(5), 057402 (2006). [CrossRef] [PubMed]
  17. J. B. Khurgin and G. Sun, “The case for using gap plasmon-polaritons in second-order optical nonlinear processes,” Opt. Express20(27), 28717–28723 (2012). [CrossRef] [PubMed]
  18. J. Renger, R. Quidant, N. van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett.104(4), 046803 (2010). [CrossRef] [PubMed]
  19. E. Poutrina, C. Ciracì, D. J. Gauthier, and D. R. Smith, “Enhancing four-wave-mixing processes by nanowire arrays coupled to a gold film,” Opt. Express20(10), 11005–11013 (2012). [CrossRef] [PubMed]
  20. S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater.11(1), 34–38 (2011). [CrossRef] [PubMed]
  21. D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriezis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express20(7), 7655–7662 (2012). [CrossRef] [PubMed]
  22. C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam manipulating by metallic nano-optic lens containing nonlinear media,” Opt. Express15(15), 9541–9546 (2007). [CrossRef] [PubMed]
  23. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express16(1), 413–425 (2008). [CrossRef] [PubMed]
  24. R. W. Boyd, “The intensity-dependent refractive index,” in Nonlinear Optics, 3rd ed. (Academic Press, 2008).
  25. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006). [CrossRef]
  26. H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A85(5), 053803 (2012). [CrossRef]
  27. N. Shibata, R. P. Braun, and R. G. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron.23(7), 1205–1210 (1987). [CrossRef]
  28. S. Song, C. T. Allen, K. R. Demarest, and R. Hui, “Intensity-dependent phase-matching effects on four-wave mixing in optical fibers,” J. Lightwave Technol.17(11), 2285–2290 (1999). [CrossRef]
  29. K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “CW three-wave mixing in single-mode optical fibers,” J. Appl. Phys.49(10), 5098–5106 (1978). [CrossRef]
  30. X. Zou, W. Pan, B. Luo, and L.-S. Yan, “Generation of repetition-rate-quadrupled optical pulse trains using a PolM or a pair of PolMs,” IEEE J. Quantum Electron.48(1), 3–7 (2012). [CrossRef]
  31. S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci Rep2, 652 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited