OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14487–14499

Short-cavity multimode fiber-tip Fabry-Pérot sensors

Xuan Wu and Olav Solgaard  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14487-14499 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3258 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We make the case for minimizing cavity length of extrinsic Fabry-Pérot (FP) cavities for use in fiber-tip sensors. Doing so mitigates multiple challenges that arise from using multimode fibers: mode averaging, phase uncertainty, amplitude reduction, and spectral modal noise. We explore these effects in detail using modal simulations, and construct pressure sensors based on this principle. We discuss the multimodal effects that we observe in our fiber sensors, and use simple filtering of the spectral signal to more easily measure pressure sensitivity. The concept of short-cavity FP interferometry is important for ensuring high quality and performance of multimode fiber sensors.

© 2013 OSA

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(050.2230) Diffraction and gratings : Fabry-Perot
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.5475) Instrumentation, measurement, and metrology : Pressure measurement

ToC Category:

Original Manuscript: April 15, 2013
Revised Manuscript: May 21, 2013
Manuscript Accepted: June 2, 2013
Published: June 10, 2013

Xuan Wu and Olav Solgaard, "Short-cavity multimode fiber-tip Fabry-Pérot sensors," Opt. Express 21, 14487-14499 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Zhu, K. Cooper, G. Pickrell, and A. Wang, “High-temperature fiber-tip pressure sensor,” J. Lightwave Technol.24(2), 861–869 (2006). [CrossRef]
  2. Y. Gong, T. Zhao, Y. Rao, and Y. Wu, “All-fiber curvature sensor based on multimode interference,” IEEE Phot. Tech. L.23(11), 679–681 (2011). [CrossRef]
  3. Z. Ran, Z. Liu, Y. Rao, F. Xu, D. Sun, X. Yu, B. Xu, and J. Zhang, “Miniature fiber-optic tip high pressure sensors micromachined by 157 nm laser,” IEEE Sens. J.11(5), 1103–1106 (2011). [CrossRef]
  4. É. Pinet, E. Cibula, and D. Donlagic, “Ultra-miniature all-glass Fabry-Perot pressure sensor manufactured at the tip of a multimode optical fiber,” Proc. SPIE6770, 67700U, 67700U-8 (2007). [CrossRef]
  5. X. Wu and O. Solgaard, “Overcoming multimodal effects in optical fiber tip CMOS-compatible Fabry-Pérot sensors,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2012), paper JW2A.68. http://www.opticsinfobase.org/abstract.cfm?URI=QELS-2012-JW2A.68
  6. M. Han and A. Wang, “Mode power distribution effect in white-light multimode fiber extrinsic Fabry-Perot interferometric sensor systems,” Opt. Lett.31(9), 1202–1204 (2006). [CrossRef] [PubMed]
  7. F. Pérennès, P. C. Beard, and T. N. Mills, “Analysis of a low-finesse Fabry-Perot sensing interferometer illuminated by a multimode optical fiber,” Appl. Opt.38(34), 7026–7034 (1999). [CrossRef] [PubMed]
  8. M. Han and A. Wang, “Exact analysis of low-finesse multimode fiber extrinsic Fabry-Perot interferometers,” Appl. Opt.43(24), 4659–4666 (2004). [CrossRef] [PubMed]
  9. R. E. Epworth, “The phenomenon of modal noise in fiber systems,” in Optical Fiber Communication (Optical Society of America, 1979), paper ThD1.
  10. K. O. Hill, Y. Tremblay, and B. S. Kawasaki, “Modal noise in multimode fiber links: theory and experiment,” Opt. Lett.5(6), 270–272 (1980). [CrossRef] [PubMed]
  11. C.-H. Chen, R. O. Reynolds, and A. Kost, “Origin of spectral modal noise in fiber-coupled spectrographs,” Appl. Opt.45(3), 519–527 (2006). [CrossRef] [PubMed]
  12. A. Mafi, “Bandwidth improvement in multimode optical fibers via scattering from core inclusions,” J. Lightwave Technol.28(10), 1547–1555 (2010). [CrossRef]
  13. C. Kao and P. Russell, Fundamentals of Photonics, B. E. A. Saleh and M. C. Teich, eds. (John Wiley & Sons, Inc., 2007), Chap. 9.
  14. D. Marcuse, “Gaussian approximation of the fundamental modes of graded-index fibers,” J. Opt. Soc. Am.68(1), 103–109 (1978). [CrossRef]
  15. Agilent Technologies white paper, “Optical spectrum analysis” (Agilent Technologies). http://cp.literature.agilent.com/litweb/pdf/5963-7145E.pdf
  16. Opsens inc. white paper, “Opsens white-light polarization interferometry technology” (Opsens inc.) http://www.opsens.com/pdf/WLPIREV2.3.pdf
  17. É. Pinet, “Pressure measurement with fiber-optic sensors: commercial technologies and applications,” Proc. SPIE7753, 775304, 775304-4 (2011). [CrossRef]
  18. S. Shaklan, “Measurement of intermodal coupling in weakly multimode fibre optics,” Electron. Lett.26(24), 2022–2024 (1990). [CrossRef]
  19. J. N. Kutz, J. A. Cox, and D. Smith, “Mode mixing and power diffusion in multimode optical fibers,” J. Lightwave Technol.16(7), 1195–1202 (1998). [CrossRef]
  20. W. C. Young and R. G. Budynas, Roarkʼs Formulas for Stress and Strain, Warren C. Young and Richard G. Budynas, eds. (McGraw-Hill, Boston, Mass., 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited