OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14539–14547

Steady state superradiance of a 2D-spaser array

Alexander V. Dorofeenko, Alexander A. Zyablovsky, Alexey P. Vinogradov, Eugeny S. Andrianov, Alexander A. Pukhov, and Alexander A. Lisyansky  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14539-14547 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1842 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that due to near-field interaction of plasmonic particles via gain particles, a two-dimensional array of incoherently pumped spasers can be self-synchronized so that the dipole moments of all the plasmonic particles oscillate in phase and in parallel to the array plane. The synchronized state is established as a result of competition with the other possible modes having different wavenumbers and it is not destroyed by radiation of leaking waves, retardation effects, and small disorder. Such an array produces a narrow beam of coherent light due to continuous-wave superradiance. Thus, spasers, which mainly generate near-fields, become an efficient source of far-field radiation when the interaction between them is sufficiently strong.

© 2013 OSA

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Coherence and Statistical Optics

Original Manuscript: April 4, 2013
Revised Manuscript: June 4, 2013
Manuscript Accepted: June 5, 2013
Published: June 11, 2013

Alexander V. Dorofeenko, Alexander A. Zyablovsky, Alexey P. Vinogradov, Eugeny S. Andrianov, Alexander A. Pukhov, and Alexander A. Lisyansky, "Steady state superradiance of a 2D-spaser array," Opt. Express 21, 14539-14547 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006), p. 558.
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. V. M. Shalaev and S. Kawata, eds., Nanophotonics with Surface Plasmons, Advances in Nano-Optics and Nano-Photonics (Elsevier, 2007).
  4. D. J. Bergman and M. I. Stockman, “Surface Plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90(2), 027402 (2003). [CrossRef] [PubMed]
  5. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  6. Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic Nanolaser using epitaxially grown silver film,” Science337(6093), 450–453 (2012). [CrossRef] [PubMed]
  7. I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O’Reilly, “Dipole nanolaser,” Phys. Rev. A71(6), 063812 (2005). [CrossRef]
  8. A. A. Kolokolov and G. V. Skrotskii, “Interference of reactive components of an electromagnetic field,” Sov. Phys. Usp.35(12), 1089–1093 (1992). [CrossRef]
  9. V. S. Zuev and G. Y. Zueva, “Very slow surface plasmons: Theory and practice (Review),” Opt. Spectrosc.107(4), 614–628 (2009). [CrossRef]
  10. A. P. Vinogradov and A. V. Dorofeenko, “Destruction of the image of the Pendry lens during detection,” Opt. Commun.256(4-6), 333–336 (2005). [CrossRef]
  11. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19(22), 22029–22106 (2011). [CrossRef] [PubMed]
  12. M. Premaratne and G. P. Agrawal, Light Propagation in Gain Medium (Cambridge University Press, 2011).
  13. L. C. Davis, “Electostatic edge modes of a dielectric wedge,” Phys. Rev. B14(12), 5523–5525 (1976). [CrossRef]
  14. A. Eguiluz and A. A. Maradudin, “Electrostatic edge modes along a parabolic wedge,” Phys. Rev. B14(12), 5526–5528 (1976). [CrossRef]
  15. J. B. Pendry, J. B. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter10(22), 4785–4809 (1998). [CrossRef]
  16. I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B66(3), 035403 (2002). [CrossRef]
  17. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B70(12), 125429 (2004). [CrossRef]
  18. T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett.85(18), 3968–3970 (2004). [CrossRef]
  19. A. Banerjee, R. Li, and H. Grebel, “Surface plasmon lasers with quantum dots as gain media,” Appl. Phys. Lett.95(25), 251106 (2009). [CrossRef]
  20. Z.-G. Dong, H. Liu, T. Li, Z.-H. Zhu, S.-M. Wang, J.-X. Cao, S.-N. Zhu, and X. Zhang, “Modeling the directed transmission and reflection enhancements of the lasing surface plasmon amplification by stimulated emission of radiation in active metamaterials,” Phys. Rev. B80(23), 235116 (2009). [CrossRef]
  21. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  22. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett.23(17), 1331–1333 (1998). [CrossRef] [PubMed]
  23. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B67(20), 205402 (2003). [CrossRef]
  24. E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Stationary behavior of a chain of interacting spasers,” Phys. Rev. B85(16), 165419 (2012). [CrossRef]
  25. E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Forced synchronization of spaser by an external optical wave,” Opt. Express19(25), 24849–24857 (2011). [CrossRef] [PubMed]
  26. E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Dipole Response of Spaser on an External Optical Wave,” Opt. Lett.36(21), 4302–4304 (2011). [CrossRef] [PubMed]
  27. A. V. Klyuchnik, S. Y. Kurganov, and Y. E. Lozovik, “Plasmons at a hole in a screen,” Phys. Solid State45(9), 1793–1797 (2003). [CrossRef]
  28. A. N. Oraevsky, “Resonant properties of a system comprising a cavity mode and two-level atoms and frequency bistability,” Quantum Electron.29(11), 975–978 (1999). [CrossRef]
  29. R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, 1969).
  30. M. Sargent and P. Meystre, Elements of Quantum Optics (Springer-Verlag Berlin Heidelberg, 2007), p. 508.
  31. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997).
  32. Y. I. Khanin, Fundamentals of Laser Dynamics (Cambridge Int Science Publishing, 2006).
  33. R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev.93(1), 99–110 (1954). [CrossRef]
  34. M. Gross and S. Haroche, “Superradiance: An essay on the theory of collective spontaneous emission,” Phys. Rep.93(5), 301–396 (1982). [CrossRef]
  35. J. G. Bohnet, Z. Chen, J. M. Weiner, D. Meiser, M. J. Holland, and J. K. Thompson, “A steady-state superradiant laser with less than one intracavity photon,” Nature484(7392), 78–81 (2012). [CrossRef] [PubMed]
  36. V. N. Pustovit and T. V. Shahbazyan, “Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: The plasmonic Dicke effect,” Phys. Rev. Lett.102(7), 077401 (2009). [CrossRef] [PubMed]
  37. C. A. Balanis, Antenna Theory - Analysis and Design, 3rd Ed. (Willey-Interscience, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited