OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14548–14554

A dichroic surface-plasmon-polariton splitter based on an asymmetric T-shape nanoslit

Xiang Zhang, Zhi Li, Jianjun Chen, Song Yue, and Qihuang Gong  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14548-14554 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3306 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An asymmetric T-shape nanoslit in a metal film is proposed to act as an efficient dichroic surface-plasmon-polariton (SPP) splitter, which is composed of a single nanoslit in immediate contacting with two nanogrooves with different widths. Simulations show that, due to the interferences of SPPs in the upper part of the asymmetric T-shape nanoslit, the generated SPPs propagating to the left and right directions on the front metal surface can be manipulated nearly independently by altering the right and left groove widths, respectively. Based on such effects, a dichroic SPP splitter is demonstrated and the splitting wavelengths can easily be adjusted. High splitting ratios of 31:1 and 1:12 at splitting wavelengths of 680 nm and 884 nm are numerically presented with a device’s lateral dimension of only 1200 nm. Further experimental results match the simulations well.

© 2013 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: April 10, 2013
Revised Manuscript: May 25, 2013
Manuscript Accepted: May 29, 2013
Published: June 11, 2013

Xiang Zhang, Zhi Li, Jianjun Chen, Song Yue, and Qihuang Gong, "A dichroic surface-plasmon-polariton splitter based on an asymmetric T-shape nanoslit," Opt. Express 21, 14548-14554 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  3. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008). [CrossRef]
  4. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007). [CrossRef]
  5. G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett.9(1), 327–331 (2009). [CrossRef] [PubMed]
  6. I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficient unidirectional ridge excitation of surface plasmons,” Opt. Express17(9), 7228–7232 (2009). [CrossRef] [PubMed]
  7. J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett.97(4), 041113 (2010). [CrossRef]
  8. A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett.11(10), 4207–4212 (2011). [CrossRef] [PubMed]
  9. Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett.12(9), 4853–4858 (2012). [CrossRef] [PubMed]
  10. S. B. Raghunathan, C. H. Gan, T. van Dijk, B. Ea Kim, H. F. Schouten, W. Ubachs, P. Lalanne, and T. D. Visser, “Plasmon switching: observation of dynamic surface plasmon steering by selective mode excitation in a sub-wavelength slit,” Opt. Express20(14), 15326–15335 (2012). [CrossRef] [PubMed]
  11. Q. Q. Gan, B. S. Guo, G. F. Song, L. H. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic surface-wave splitter,” Appl. Phys. Lett.90(16), 161130 (2007). [CrossRef]
  12. Q. Q. Gan and F. J. Bartoli, “Bidirectional surface wave splitter at visible frequencies,” Opt. Lett.35(24), 4181–4183 (2010). [CrossRef] [PubMed]
  13. J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Ultracompact surface-plasmon-polariton splitter based on modulations of quasicylindrical waves to the total field,” J. Appl. Phys.109(7), 073102 (2011). [CrossRef]
  14. J. S. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat Commun2, 525 (2011). [CrossRef] [PubMed]
  15. X. Zhang, Z. Li, J. Chen, H. Liao, S. Yue, and Q. Gong, “A submicron surface-plasmon-polariton dichroic splitter based on a composite cavity structure,” Appl. Phys. Lett.102(9), 091110 (2013). [CrossRef]
  16. J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett.12(5), 2494–2498 (2012). [CrossRef] [PubMed]
  17. J. J. Chen, C. Wang, G. W. Lu, W. Q. Li, J. H. Xiao, and Q. H. Gong, “Highly efficient nanofocusing based on a T-shape micro-slit surrounded with multi-slits,” Opt. Express20(16), 17734–17740 (2012). [CrossRef] [PubMed]
  18. Z. W. Zeng and H. T. Liu, “Electromagnetic enhancement by a T-shaped metallic nanogroove: impact of surface plasmon polaritons and other surface waves,” IEEE J. Sel. Top. Quantum Electron.18(6), 1669–1675 (2012). [CrossRef]
  19. Y. X. Cui, K. H. Fung, J. Xu, S. L. He, and N. X. Fang, “Multiband plasmonic absorber based on transverse phase resonances,” Opt. Express20(16), 17552–17559 (2012). [CrossRef] [PubMed]
  20. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited