OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14555–14565

Wide field-of-view Talbot grid-based microscopy for multicolor fluorescence imaging

Shuo Pang, Chao Han, Jessey Erath, Ana Rodriguez, and Changhuei Yang  »View Author Affiliations


Optics Express, Vol. 21, Issue 12, pp. 14555-14565 (2013)
http://dx.doi.org/10.1364/OE.21.014555


View Full Text Article

Enhanced HTML    Acrobat PDF (2107 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The capability to perform multicolor, wide field-of-view (FOV) fluorescence microscopy imaging is important in screening and pathology applications. We developed a microscopic slide-imaging system that can achieve multicolor, wide FOV, fluorescence imaging based on the Talbot effect. In this system, a light-spot grid generated by the Talbot effect illuminates the sample. By tilting the excitation beam, the Talbot-focused spot scans across the sample. The images are reconstructed by collecting the fluorescence emissions that correspond to each focused spot with a relay optics arrangement. The prototype system achieved an FOV of 12 × 10 mm2 at an acquisition time as fast as 23 s for one fluorescence channel. The resolution is fundamentally limited by spot size, with a demonstrated full-width at half-maximum spot diameter of 1.2 μm. The prototype was used to nimage green fluorescent beads, double-stained human breast cancer SK-BR-3 cells, Giardia lamblia cysts, and the Cryptosporidium parvum oocysts. This imaging method is scalable and simple for implementation of high-speed wide FOV fluorescence microscopy.

© 2013 OSA

OCIS Codes
(110.6760) Imaging systems : Talbot and self-imaging effects
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Microscopy

History
Original Manuscript: May 14, 2013
Revised Manuscript: June 5, 2013
Manuscript Accepted: June 5, 2013
Published: June 11, 2013

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Shuo Pang, Chao Han, Jessey Erath, Ana Rodriguez, and Changhuei Yang, "Wide field-of-view Talbot grid-based microscopy for multicolor fluorescence imaging," Opt. Express 21, 14555-14565 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-12-14555


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C.-D. Hu and T. K. Kerppola, “Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis,” Nat. Biotechnol.21(5), 539–545 (2003). [CrossRef] [PubMed]
  2. H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem.48(5), 653–662 (2000). [CrossRef] [PubMed]
  3. G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000). [CrossRef] [PubMed]
  4. B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010). [CrossRef] [PubMed]
  5. Hamamastu NanoZoomer 2.0-HT Catalog”, retrieved http://jp.hamamatsu.com/resources/products/sys/pdf/eng/e_ndp20.pdf .
  6. A. Orth and K. Crozier, “Microscopy with microlens arrays: high throughput, high resolution and light-field imaging,” Opt. Express20(12), 13522–13531 (2012). [CrossRef] [PubMed]
  7. A. Orth and K. Crozier, “Gigapixel fluorescence microscopy with a water immersion microlens array,” Opt. Express21(2), 2361–2368 (2013). [CrossRef] [PubMed]
  8. J. Wu, X. Cui, G. Zheng, Y. M. Wang, L. M. Lee, and C. Yang, “Wide field-of-view microscope based on holographic focus grid illumination,” Opt. Lett.35(13), 2188–2190 (2010). [CrossRef] [PubMed]
  9. J. G. Wu, G. A. Zheng, Z. Li, and C. H. Yang, “Focal plane tuning in wide-field-of-view microscope with Talbot pattern illumination,” Opt. Lett.36(12), 2179–2181 (2011). [CrossRef] [PubMed]
  10. A. Olszak and M. Descour, “Microscopy in multiples,” SPIE oemagazine, May 2005, 16–18 (2005), doi: . [CrossRef]
  11. B. Hulsken, D. Vossen, and S. Stallinga, “High NA diffractive array illuminators and application in a multi-spot scanning microscope,” J. European Opt. Soc.-Rapid Pub.7, 12026 (2012). [CrossRef]
  12. C. Han, S. Pang, D. V. Bower, P. Yiu, and C. Yang, “Wide field-of-view on-chip Talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator,” Anal. Chem.85(4), 2356–2360 (2013). [CrossRef] [PubMed]
  13. S. Pang, C. Han, M. Kato, P. W. Sternberg, and C. H. Yang, “Wide and scalable field-of-view Talbot-grid-based fluorescence microscopy,” Opt. Lett.37(23), 5018–5020 (2012). [CrossRef] [PubMed]
  14. A. W. Lohmann and J. A. Thomas, “Making an array illuminator based on the Talbot effect,” Appl. Opt.29(29), 4337–4340 (1990). [CrossRef] [PubMed]
  15. S. Pang, C. Han, L. M. Lee, and C. H. Yang, “Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope,” Lab Chip11(21), 3698–3702 (2011). [CrossRef] [PubMed]
  16. J. Pawley, Handbook of Biological Confocal Microscopy (Springer, 2006).
  17. W. J. Smith and I. Genesee, Optics Software, Modern Lens Design: A Resource Manual (McGraw-Hill, 1992).
  18. A. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun.2(9), 413–415 (1971). [CrossRef]
  19. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys.2(4), 258–261 (2006). [CrossRef]
  20. H. D. Luján, M. R. Mowatt, and T. E. Nash, “Mechanisms of Giardia lamblia differentiation into cysts,” Microbiol. Mol. Biol. Rev.61(3), 294–304 (1997). [PubMed]
  21. W. D. Montgomery, “Self-imaging objects of infinite aperture,” J. Opt. Soc. Am.57(6), 772–778 (1967). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited