OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14573–14582

Feasibility of fiber-optic radiation sensor using Cerenkov effect for detecting thermal neutrons

Kyoung Won Jang, Takahiro Yagi, Cheol Ho Pyeon, Wook Jae Yoo, Sang Hun Shin, Tsuyoshi Misawa, and Bongsoo Lee  »View Author Affiliations


Optics Express, Vol. 21, Issue 12, pp. 14573-14582 (2013)
http://dx.doi.org/10.1364/OE.21.014573


View Full Text Article

Acrobat PDF (1303 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this research, we propose a novel method for detecting thermal neutrons with a fiber-optic radiation sensor using the Cerenkov effect. We fabricate a fiber-optic radiation sensor that detects thermal neutrons with a Gd-foil, a rutile crystal, and a plastic optical fiber. The relationship between the fluxes of electrons inducing Cerenkov radiation in the sensor probe of the fiber-optic radiation sensor and thermal neutron fluxes is determined using the Monte Carlo N-particle transport code simulations. To evaluate the fiber-optic radiation sensor, the Cerenkov radiation generated in the fiber-optic radiation sensor by irradiation of pure thermal neutron beams is measured according to the depths of polyethylene.

© 2013 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(350.5610) Other areas of optics : Radiation
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Sensors

History
Original Manuscript: April 30, 2013
Revised Manuscript: June 5, 2013
Manuscript Accepted: June 5, 2013
Published: June 11, 2013

Citation
Kyoung Won Jang, Takahiro Yagi, Cheol Ho Pyeon, Wook Jae Yoo, Sang Hun Shin, Tsuyoshi Misawa, and Bongsoo Lee, "Feasibility of fiber-optic radiation sensor using Cerenkov effect for detecting thermal neutrons," Opt. Express 21, 14573-14582 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-12-14573


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. T. K. McKnight, J. B. Czirr, K. Littrell, and B. J. Campbell, “The flexible embedded-fiber neutron detector,” Nucl. Instrum. Meth. A586(2), 246–250 (2008). [CrossRef]
  2. M. Ishikawa, K. Ono, Y. Sakurai, H. Unesaki, A. Uritani, G. Bengua, T. Kobayashi, K. Tanaka, and T. Kosako, “Development of real-time thermal neutron monitor using boron-loaded plastic scintillator with optical fiber for boron neutron capture therapy,” Appl. Radiat. Isot.61(5), 775–779 (2004). [CrossRef] [PubMed]
  3. E. Takada, T. Iguchi, H. Takahashi, M. Nakazawa, M. Sasao, M. Osakabe, and Y. Ikeda, “Distributed sensing of fusion neutrons by plastic scintillating fibers,” Fusion Eng. Des.34-35, 591–594 (1997). [CrossRef]
  4. A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J.-R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, and H. El-Rabii, “Real-time fiber optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des.83(1), 50–59 (2008). [CrossRef]
  5. S. O’Keeffe, C. Fitzpatrick, E. Lewis, and A. I. Al-Shamma’a, “A review of optical fibre radiation dosimeters,” Sensor Rev.28(2), 136–142 (2008). [CrossRef]
  6. B. Lee, W. Y. Choi, and J. K. Walker, “Polymer-polymer miscibility study for plastic gradient index optical fiber,” Polym. Eng. Sci.40(9), 1996–1999 (2000). [CrossRef]
  7. G. Bartesaghi, V. Conti, M. Prest, V. Mascagna, S. Scazzi, P. Cappelletti, M. Frigerio, S. Gelosa, A. Monti, A. Ostinelli, A. Mozzanica, R. Bevilacqua, G. Giannini, P. Totaro, and E. Vallazza, “A real time scintillating fiber dosimeter for gamma and neutron monitoring on radiotherapy accelerators,” Nucl. Instrum. Meth. A572(1), 228–230 (2007). [CrossRef]
  8. B. Lee, K. W. Jang, D. H. Cho, W. J. Yoo, S. H. Shin, G.-R. Tack, S.-C. Chung, S. Kim, H. Cho, B. G. Park, J. H. Moon, and S. Kim, “Characterization of one-dimensional fiber-optic scintillating detectors for electron-beam therapy dosimetry,” IEEE Trans. Nucl. Sci.55(5), 2627–2631 (2008). [CrossRef]
  9. B. Lee, K. W. Jang, D. H. Cho, W. J. Yoo, S. H. Shin, H. S. Kim, J. H. Yi, S. Kim, H. Cho, B. G. Park, J. H. Moon, and S. Kim, “Measurement of two-dimensional photon beam distributions using a fiber-optic radiation sensor for small field radiation therapy,” IEEE Trans. Nucl. Sci.55(5), 2632–2636 (2008). [CrossRef]
  10. T. Yagi, H. Unesaki, T. Misawa, C. H. Pyeon, S. Shiroya, T. Matsumoto, and H. Harano, “Development of a small scintillation detector with an optical fiber for fast neutrons,” Appl. Radiat. Isot.69(2), 539–544 (2011). [CrossRef] [PubMed]
  11. S. M. Popov, V. V. Voloshin, I. L. Vorobyov, G. A. Ivanov, A. O. Kolosovskii, V. A. Isaev, and Y. K. Chamorovskii, “Optical loss of metal coated optical fibers at temperatures up to 800°C,” Opt. Mem. Neural. Networks21(1), 45–51 (2012) (Information Optics). [CrossRef]
  12. D. A. Abdushukurov, A. A. Dzhuraev, S. S. Evteeva, P. P. Kovalenko, V. A. Leskin, V. A. Nikolaev, R. F. Sirodzhi, and F. B. Umarov, “Model calculation of efficiency of gadolinium based converters of thermal neutrons,” Nucl. Instrum. Meth. B84(3), 400–404 (1994). [CrossRef]
  13. M. L. Crow, J. P. Hodges, and R. G. Cooper, “Shifting scintillator prototype large pixel wavelength-shifting fiber detector for the POWGEN3 powder diffractometer,” Nucl. Instrum. Meth. A529(1-3), 287–292 (2004). [CrossRef]
  14. C. Mori, A. Uritani, H. Miyahara, T. Iguchi, S. Shiroya, K. Kobayashi, E. Takada, R. F. Fleming, Y. K. Dewaraja, D. Stuenkel, and G. F. Knoll, “Measurement of neutron and γ-ray intensity distributions with an optical fiber-scintillator detector,” Nucl. Instrum. Meth. A422(1-3), 129–132 (1999). [CrossRef]
  15. M. Cinausero, M. Barbui, G. Prete, V. Rizzi, A. Andrighetto, S. Pesente, D. Fabris, M. Lunardon, G. Nebbia, G. Viesti, S. Moretto, M. Morando, A. Zenoni, F. Bocci, A. Donzella, G. Bonomi, and A. Fontana, “A proton recoil telescope for neutron spectroscopy,” J. Phys. Conf. Ser.41, 219–224 (2006). [CrossRef]
  16. S. Mouatassim, G. J. Costa, G. Guillaume, B. Heusch, A. Huck, and M. Moszynski, “The light yield response of NE213 organic scintillators to charged particles resulting from neutron interactions,” Nucl. Instrum. Meth. A359(3), 530–536 (1995). [CrossRef]
  17. Y. Furukawa, M. Tanaka, T. Nakazato, T. Tatsumi, M. Nishikino, H. Yamatani, K. Nagashima, T. Kimura, H. Murakami, S. Saito, N. Sarukura, H. Nishimura, K. Mima, Y. Kagamitani, D. Ehrentraut, and T. Fukuda, “Temperature dependence of scintillation properties for a hydrothermal-method-grown zinc oxide crystal evaluated by nickel-like silver laser pulses,” J. Opt. Soc. Am. B25(7), B118–B121 (2008). [CrossRef]
  18. M. Danang Birowosuto, P. Dorenbos, G. Bizarri, C. W. E. van Eijk, K. W. Krämer, and H. U. Güdel, “Temperature dependent scintillation and luminescence characteristics of GdI3: Ce3+,” IEEE Trans. Nucl. Sci.55, 1164–1169 (2008).
  19. R. L. Boivin, Z. Lin, A. L. Roquemore, and S. J. Zweben, “Calibration of the TFTR lost alpha diagnostic,” Rev. Sci. Instrum.63(10), 4418–4426 (1992). [CrossRef]
  20. J. V. Jelly, “Cerenkov radiation and its applications,” J. Appl. Phys.6, 227–232 (1955).
  21. M. Kuribara and K. Nemoto, “Development of new UV-1.1. Cerenkov viewing device,” IEEE Trans. Nucl. Sci.41(1), 331–335 (1994). [CrossRef]
  22. B. A. Khrenov, I. H. Park, and H. Salazar, “Detection of scattered Cherenkov radiation in cosmic ray observations from space,” Nucl. Instrum. Meth. A553(1-2), 304–307 (2005). [CrossRef]
  23. L. Jakubowski, M. J. Sadowski, J. Zebrowski, M. Rabinski, K. Malinowski, R. Mirowski, Ph. Lotte, J. Gunn, J.-Y. Pascal, G. Colledani, V. Basiuk, M. Goniche, and M. Lipa, “Cherenkov-type diamond detectors for measurements of fast electrons in the TORE-SUPRA tokamak,” Rev. Sci. Instrum.81(1), 013504 (2010). [CrossRef] [PubMed]
  24. K. W. Jang, W. J. Yoo, S. H. Shin, D. Shin, and B. Lee, “Fiber-optic Cerenkov radiation sensor for proton therapy dosimetry,” Opt. Express20(13), 13907–13914 (2012). [CrossRef] [PubMed]
  25. Z. W. Bell and L. A. Boatner, “Neutron detection via the Cherenkov effect,” IEEE Trans. Nucl. Sci.57, 3800–3806 (2010).
  26. B. Brichard, A. F. Fernandez, H. Ooms, and F. Berghmans, “Fiber-optic gamma-flux monitoring in a fission reactor by means of Cerenkov radiation,” Meas. Sci. Technol.18(10), 3257–3262 (2007). [CrossRef]
  27. A. S. Beddar, T. R. Mackie, and F. H. Attix, “Cerenkov radiation generated in optical fibres and other light pipes irradiated by electron beams,” Phys. Med. Biol.37(4), 925–935 (1992). [CrossRef]
  28. G. F. Knoll, Radiation Detection and Measurement (John Wiley & Sons, New York 1999), p.509.
  29. G. De Stasio, P. Casalbore, R. Pallini, B. Gilbert, F. Sanità, M. T. Ciotti, G. Rosi, A. Festinesi, L. M. Larocca, A. Rinelli, D. Perret, D. W. Mogk, P. Perfetti, M. P. Mehta, and D. Mercanti, “Gadolinium in human glioblastoma cells for gadolinium neutron capture therapy,” Cancer Res.61(10), 4272–4277 (2001). [PubMed]
  30. Y. M. Protopopov and V. G. Vasil’chenko, “Radiation damage in plastic scintillators and optical fibers,” Nucl. Instrum. Meth. B95(4), 496–500 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited