OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14583–14590

Improved calibration method for depolarization lidar measurement

Bo Liu and Zhien Wang  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14583-14590 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1257 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An improved calibration method for lidar depolarization measurement is described. With this method the system constants including the electronic gain ratio of the parallel and perpendicular channels, the optical reflectance and transmission parameters of the polarizing beam splitter, and the linear polarization ratio of the emitting laser beam can be determined conveniently by using lidar measurements with a half-wave plate oriented at selected angles.

© 2013 OSA

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(260.5430) Physical optics : Polarization
(280.1310) Remote sensing and sensors : Atmospheric scattering
(290.1090) Scattering : Aerosol and cloud effects
(010.1615) Atmospheric and oceanic optics : Clouds

ToC Category:
Remote Sensing

Original Manuscript: April 4, 2013
Revised Manuscript: June 2, 2013
Manuscript Accepted: June 3, 2013
Published: June 11, 2013

Bo Liu and Zhien Wang, "Improved calibration method for depolarization lidar measurement," Opt. Express 21, 14583-14590 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. M. Schotland, K. Sassen, and R. Stone, “Observations by lidar of linear depolarization ratios by hydrometeors,” J. Appl. Meteorol.10(5), 1011–1017 (1971), http://journals.ametsoc.org/doi/abs/10.1175/1520-0450(1971)010%3C1011%3AOBLOLD%3E2.0.CO%3B2 . [CrossRef]
  2. A. Behrendt and T. Nakamura, “Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature,” Opt. Express10(16), 805–817 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?id=69680 . [CrossRef] [PubMed]
  3. H. Adachi, T. Shibata, Y. Iwasaka, and M. Fujiwara, “Calibration method for the lidar-observed stratospheric depolarization ratio in the presence of liquid aerosol particles,” Appl. Opt.40(36), 6587–6595 (2001), http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-40-36-6587 . [CrossRef] [PubMed]
  4. K. Sassen, “The polarization lidar technique for cloud research: A review and current assessment,” Bull. Amer. Meteor. Soc 72, 1848–1866 (1991). http://journals.ametsoc.org/doi/abs/10.1175/1520-0477(1991)072%3C1848%3ATPLTFC%3E2.0.CO%3B2 . [CrossRef]
  5. K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part II: Microphysical properties derived from lidar depolarization,” J. Atmos. Sci.58(15), 2103–2112 (2001), http://journals.ametsoc.org/doi/abs/10.1175/1520-0469(2001)058%3C2103%3AAMCCCF%3E2.0.CO%3B2 . [CrossRef]
  6. C. M. R. Platt, “Lidar observation of a mixed-phase altostratus cloud,” J. Appl. Meteorol.16(4), 339–345 (1977), http://journals.ametsoc.org/doi/abs/10.1175/1520-0450%281977%29016%3C0339%3ALOOAMP%3E2.0.CO%3B2 . [CrossRef]
  7. E. W. Eloranta and P. Piironen, “Depolarization measurements with the high spectral resolution lidar,” in 17th International Laser Radar Conference, (Laser Radar Society of Japan, ICLAS, NASDA, and NIES, Sendai, Japan, 1994). pp. 127–128.
  8. J. Larry Pezzaniti and R. A. Chipman, “Angular dependence of polarizing beam-splitter cubes,” Appl. Opt.33(10), 1916–1929 (1994), http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-33-10-1916 . [CrossRef] [PubMed]
  9. J. Mouchart, J. Begel, and E. Duda, “Modified MacNeille cube polarizer for a wide angular field,” Appl. Opt.28(14), 2847–2853 (1989), http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-28-14-2847 . [CrossRef] [PubMed]
  10. R. P. Netterfield, “Practical thin-film polarizing beam-splitters,” Opt. Acta (Lond.)24(1), 69–79 (1977), http://www.tandfonline.com/doi/abs/10.1080/713819379 . [CrossRef]
  11. J. D. Spinhirne, M. Z. Hansen, and L. O. Caudill, “Cloud top remote sensing by airborne lidar,” Appl. Opt.21(9), 1564–1571 (1982), http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-21-9-1564 . [CrossRef] [PubMed]
  12. J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winkler, “Calibration technique for polarization-sensitive lidars,” J. Atmos. Ocean. Technol.23(5), 683–699 (2006), http://journals.ametsoc.org/doi/abs/10.1175/JTECH1872.1 . [CrossRef]
  13. V. Freudenthaler, M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefeldner, “Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006,” Tellus61B, 165–179 (2009), http://www.tellusb.net/index.php/tellusb/article/view/16821 .
  14. Y. You, G. W. Kattawar, P. Yang, X. H. Hu, and B. A. Baum, “Sensitivity of depolarized lidar signals to cloud and aerosol particle properties,” J. Quant. Spectrosc. Radiat. Transf.100(1-3), 470–482 (2006), http://www.sciencedirect.com/science/article/pii/S0022407305004097 . [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited