OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14591–14605

Dispersion relation, propagation length and mode conversion of surface plasmon polaritons in silver double-nanowire systems

Shulin Sun, Hung-Ting Chen, Wei-Jin Zheng, and Guang-Yu Guo  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14591-14605 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (8569 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the surface plasmon modes in a silver double-nanowire system by employing the eigenmode analysis approach based on the finite element method. Calculated dispersion relations, surface charge distributions, field patterns and propagation lengths of ten lowest energy plasmon modes in the system are presented. These ten modes are categorized into three groups because they are found to originate from the monopole-monopole, dipole-dipole and quadrupole-quadrupole hybridizations between the two wires, respectively. Interestingly, in addition to the well studied gap mode (mode 1), the other mode from group 1 which is a symmetrically coupled charge mode (mode 2) is found to have a larger group velocity and a longer propagation length than mode 1, suggesting mode 2 to be another potential signal transporter for plasmonic circuits. Scenarios to efficiently excite (inject) group 1 modes in the two-wire system and also to convert mode 2 (mode 1) to mode 1 (mode 2) are demonstrated by numerical simulations.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2030) Physical optics : Dispersion
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: March 29, 2013
Revised Manuscript: May 11, 2013
Manuscript Accepted: May 13, 2013
Published: June 12, 2013

Shulin Sun, Hung-Ting Chen, Wei-Jin Zheng, and Guang-Yu Guo, "Dispersion relation, propagation length and mode conversion of surface plasmon polaritons in silver double-nanowire systems," Opt. Express 21, 14591-14605 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  3. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3-4), 131–314 (2005). [CrossRef]
  4. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  5. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  6. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett.78(9), 1667–1670 (1997). [CrossRef]
  7. S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  8. M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett.98(2), 026104 (2007). [CrossRef] [PubMed]
  9. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453(7196), 757–760 (2008). [CrossRef] [PubMed]
  10. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012). [CrossRef]
  11. K. Bao, H. Sobhani, and P. Nordlander, “Plasmon hybridization for real metals,” Chin. Sci. Bull.55(24), 2629–2634 (2010). [CrossRef]
  12. V. Klimov and G.-Y. Guo, “Bright and dark plasmon modes in three nanocylinder cluster,” J. Phys. Chem. C114(51), 22398–22405 (2010). [CrossRef]
  13. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003). [CrossRef] [PubMed]
  14. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003). [CrossRef] [PubMed]
  15. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett.23(17), 1331–1333 (1998). [CrossRef] [PubMed]
  16. K. H. Fung and C. T. Chan, “Plasmonic modes in periodic metal nanoparticle chains: a direct dynamic eigenmode analysis,” Opt. Lett.32(8), 973–975 (2007). [CrossRef] [PubMed]
  17. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005). [CrossRef] [PubMed]
  18. A. Manjavacas and F. J. García de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,” Nano Lett.9(4), 1285–1289 (2009). [CrossRef] [PubMed]
  19. A. Manjavacas and F. J. García de Abajo, “Coupling of gap plasmons in multi-wire waveguides,” Opt. Express17(22), 19401–19413 (2009). [CrossRef] [PubMed]
  20. W. Cai, L. Wang, X. Zhang, J. Xu, and F. J. Garcia de Abajo, “Controllable excitation of gap plasmons by electron beams in metallic nanowire pairs,” Phys. Rev. B82(12), 125454 (2010). [CrossRef]
  21. V. Myroshnychenko, A. Stefanski, A. Manjavacas, M. Kafesaki, R. I. Merino, V. M. Orera, D. A. Pawlak, and F. J. García de Abajo, “Interacting plasmon and phonon polaritons in aligned nano- and microwires,” Opt. Express20(10), 10879–10887 (2012). [CrossRef] [PubMed]
  22. Z. X. Zhang, M. L. Hu, K. T. Chan, and C. Y. Wang, “Plasmonic waveguiding in a hexagonally ordered metal wire array,” Opt. Lett.35(23), 3901–3903 (2010). [CrossRef] [PubMed]
  23. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005). [CrossRef] [PubMed]
  24. J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett.9(6), 2372–2377 (2009). [CrossRef] [PubMed]
  25. M. Bora, B. J. Fasenfest, E. M. Behymer, A. S. P. Chang, H. T. Nguyen, J. A. Britten, C. C. Larson, J. W. Chan, R. R. Miles, and T. C. Bond, “Plasmon resonant cavities in vertical nanowire arrays,” Nano Lett.10(8), 2832–2837 (2010). [CrossRef] [PubMed]
  26. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  27. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]
  28. J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Åkerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett.97(23), 231121 (2010). [CrossRef]
  29. F. J. Garcia de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B65(11), 115418 (2002). [CrossRef]
  30. M. Schmeits, “Surface-plasmon coupling in cylindrical pores,” Phys. Rev. B Condens. Matter39(11), 7567–7577 (1989). [CrossRef] [PubMed]
  31. J. P. Kottmann and O. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express8(12), 655–663 (2001). [CrossRef] [PubMed]
  32. M. Davanco, Y. Urzhumov, and G. Shvets, “The complex Bloch bands of a 2D plasmonic crystal displaying isotropic negative refraction,” Opt. Express15(15), 9681–9691 (2007). [CrossRef] [PubMed]
  33. C. Fietz, Y. Urzhumov, and G. Shvets, “Complex k band diagrams of 3D metamaterial/photonic crystals,” Opt. Express19(20), 19027–19041 (2011). [CrossRef] [PubMed]
  34. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  35. A. D. Boardman, Electromagnetic Surface Modes (John Wiley & Sons ltd, 1982).
  36. J. C. Ashley and L. C. Emerson, “Dispersion relations for non-radiative surface plasmons on cylinders,” Surf. Sci.41(2), 615–618 (1974). [CrossRef]
  37. Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B75(3), 035411 (2007). [CrossRef]
  38. D. M. Bishop, Group Theory and Chemistry (Charendon Press, 1973).
  39. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express13(17), 6645–6650 (2005). [CrossRef] [PubMed]
  40. G. Veronis and S. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Express16(3), 2129–2140 (2008). [CrossRef] [PubMed]
  41. G. B. Hoffman and R. M. Reano, “Vertical coupling between gap plasmon waveguides,” Opt. Express16(17), 12677–12687 (2008). [CrossRef] [PubMed]
  42. D. K. Gramotnev, K. C. Vernon, and D. F. P. Pile, “Directional coupler using gap plasmon waveguides,” Appl. Phys. B93(1), 99–106 (2008). [CrossRef]
  43. Y. Ma, G. Farrell, Y. Semenova, H. P. Chan, H. Zhang, and Q. Wu, “Novel dielectric-loaded plasmonic waveguide for tight-confined hybrid plasmon mode,” Plasmonics8(2), 1259–1263 (2013). [CrossRef]
  44. H. R. Park, J. M. Park, M. S. Kim, and M. H. Lee, “A waveguide-typed plasmonic mode converter,” Opt. Express20(17), 18636–18645 (2012). [CrossRef] [PubMed]
  45. Y. T. Hung, C. B. Huang, and J. S. Huang, “Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction,” Opt. Express20(18), 20342–20355 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited