OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14606–14617

Simple and efficient defect-tailored fiber-based UV-VIS broadband white light generation

Chien-Chih Lai, Nai-Chia Cheng, Cheng-Kai Wang, Jeng-Wei Tjiu, Ming-Yi Lin, and Sheng-Yao Huang  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14606-14617 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4463 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate a facile approach for ultraviolet-visible broadband generation from a sapphire crystal core–borosilicate glass cladding hybrid fiber using a laser-heated pedestal growth technique. Considerable formation of F– and F2–type color emitters is effectively facilitated by Ti4+ ions and Al3+ vacancies, retaining efficient luminescence and high crystallinity of the sapphire core. These color centers intensify the ultraviolet, blue, and green emissions at 370, 450, and 540 nm, whereas the 650-nm red emission is contributed by Cr3+ in the octahedral sites of the corundum structure. Over 1-mW white light with an optical-to-optical efficiency of up to nearly 5% and 1931 Commission International de l’Eclairage chromaticity coordinate of (0.287, 0.333) is achieved under 325-nm excitation.

© 2013 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(160.2220) Materials : Defect-center materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 26, 2013
Revised Manuscript: June 5, 2013
Manuscript Accepted: June 6, 2013
Published: June 12, 2013

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics

Chien-Chih Lai, Nai-Chia Cheng, Cheng-Kai Wang, Jeng-Wei Tjiu, Ming-Yi Lin, and Sheng-Yao Huang, "Simple and efficient defect-tailored fiber-based UV-VIS broadband white light generation," Opt. Express 21, 14606-14617 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001). [CrossRef] [PubMed]
  3. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol.21(11), 1361–1367 (2003). [CrossRef] [PubMed]
  4. E. M. Frohman, J. G. Fujimoto, T. C. Frohman, P. A. Calabresi, G. Cutter, and L. J. Balcer, “Optical coherence tomography: a window into the mechanisms of multiple sclerosis,” Nat. Clin. Pract. Neurol.4(12), 664–675 (2008). [CrossRef] [PubMed]
  5. N. C. Cheng, T. H. Hsieh, Y. T. Wang, C. C. Lai, C. K. Chang, M. Y. Lin, D. W. Huang, J. W. Tjiu, and S. L. Huang, “Cell death detection by quantitative three-dimensional single-cell tomography,” Biomed. Opt. Express3(9), 2111–2120 (2012). [CrossRef] [PubMed]
  6. C. Zeiss, http://meditec.zeiss.com
  7. Optovue, http://www.optovue.com
  8. Thorlabs, http://www.thorlabs.com
  9. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express12(10), 2156–2165 (2004). [CrossRef] [PubMed]
  10. Z. Zhi, J. Qin, L. An, and R. K. Wang, “Supercontinuum light source enables in vivo optical microangiography of capillary vessels within tissue beds,” Opt. Lett.36(16), 3169–3171 (2011). [CrossRef] [PubMed]
  11. P. Blandin, S. Lévêque-Fort, S. Lécart, J. C. Cossec, M.-C. Potier, Z. Lenkei, F. Druon, and P. Georges, “Time-gated total internal reflection fluorescence microscopy with a supercontinuum excitation source,” Appl. Opt.48(3), 553–559 (2009). [CrossRef] [PubMed]
  12. W. G. Telford, F. V. Subach, and V. V. Verkhusha, “Supercontinuum white light lasers for flow cytometry,” Cytometry A75A(5), 450–459 (2009). [CrossRef] [PubMed]
  13. C. C. Lai, H. J. Tsai, K. Y. Huang, K. Y. Hsu, Z. W. Lin, K. D. Ji, W. J. Zhuo, and S. L. Huang, “Cr4+:YAG double-clad crystal fiber laser,” Opt. Lett.33(24), 2919–2921 (2008). [CrossRef] [PubMed]
  14. C. C. Lai, S. C. Wang, Y. S. Lin, T. H. Chen, and S. L. Huang, “Near-field spectroscopy of broadband emissions from γ-Al2O3 nanocrystals in Cr-doped double-clad fibers,” J. Phys. Chem. C115(41), 20289–20294 (2011). [CrossRef]
  15. C. C. Lai, C. P. Ke, S. K. Liu, C. Y. Lo, D. Y. Jheng, S. C. Wang, S. R. Lin, P. S. Yeh, and S. L. Huang, “Intracavity and resonant Raman crystal fiber laser,” Appl. Phys. Lett.100(26), 261101 (2012). [CrossRef]
  16. P. Boutinaud, P. Putaj, R. Mahiou, E. Cavalli, A. Speghini, and M. Bettinelli, “Quenching of lanthanide emission by intervalence charge transfer in crystals containing closed shell transition metal ions,” Spectrosc. Lett.40(2), 209–220 (2007). [CrossRef]
  17. P. D. Townsend, “Colour centres past, present and future,” Nature258(5533), 293–296 (1975). [CrossRef]
  18. B. Henderson, Defects in Crystalline Solids (Arnold, London, 1972).
  19. J. W. Leem and J. S. Yu, “Wafer-scale highly-transparent and superhydrophilic sapphires for high-performance optics,” Opt. Express20(24), 26160–26166 (2012). [CrossRef] [PubMed]
  20. R. M. Stroud, L. R. Nittler, and C. M. Alexander, “Polymorphism in presolar Al2O3 grains from asymptotic giant branch stars,” Science305(5689), 1455–1457 (2004). [CrossRef] [PubMed]
  21. K. H. Lee and J. H. Crawford, “Additive coloration of sapphire,” Appl. Phys. Lett.33(4), 273–275 (1978). [CrossRef]
  22. R. Ramírez, M. Tardío, R. González, Y. Chen, and M. R. Kokta, “Photochromism of vacancy-related defects in thermochemically reduced α-Al2O3:Mg single crystals,” Appl. Phys. Lett.86(8), 081914 (2005). [CrossRef]
  23. M. Itou, A. Fujiwara, and T. Uchino, “Reversible photoinduced interconversion of color centers in α-Al2O3 prepared under vacuum,” J. Phys. Chem. C113(49), 20949–20957 (2009). [CrossRef]
  24. B. Jeffries, G. P. Summers, and J. H. Crawford, “F–center fluorescence in neutron–bombarded sapphire,” J. Appl. Phys.51(7), 3984–3986 (1980). [CrossRef]
  25. B. D. Evans, “A review of the optical properties of anion lattice vacancies, and electrical conduction in α-Al2O3: their relation to radiation-induced electrical degradation,” J. Nucl. Mater.219, 202–223 (1995). [CrossRef]
  26. K. J. Caulfield, R. Cooper, and J. F. Boas, “Luminescence from electron-irradiated sapphire,” Phys. Rev. B Condens. Matter47(1), 55–61 (1993). [CrossRef] [PubMed]
  27. M. D. Rechtin, “A transmission electron microscopy study of the defect microstructure of Al2O3, subjected to ion bombardment,” Radiat. Eff.42(3-4), 129–144 (1979). [CrossRef]
  28. A. Sanchez, A. J. Strauss, R. L. Aggarwal, and R. E. Fahey, “Crystal growth, spectroscopy, and laser characteristics of Ti:Al2O3,” IEEE J. Quantum Electron.24(6), 995–1002 (1988). [CrossRef]
  29. M. Yamaga, T. Yosida, S. Hara, N. Kodama, and B. Henderson, “Optical and electron spin resonance spectroscopy of Ti3+ and Ti4+ in Al2O3,” J. Appl. Phys.75(2), 1111–1117 (1994). [CrossRef]
  30. E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Sapphire: Material, Manufacturing, Applications (Springer, New York, 2009), Chap. 2.
  31. W. Zhu and G. Pezzotti, “Phonon deformation potentials for the corundum structure of sapphire,” J. Raman. Spectrosc.42(11), 2015–2025 (2011). [CrossRef]
  32. B. Macalik, L. E. Bausá, J. García-Solé, F. Jaque, J. E. Muñoz Santiuste, and I. Vergara, “Blue emission in Ti-sapphire laser crystal,” Appl. Phys. B55, 144–147 (1992).
  33. R. Ramírez, M. Tardío, R. González, J. E. Muñoz Santiuste, and M. R. Kokta, “Optical properties of vacancies in thermochemically reduced Mg-doped sapphire single crystals,” J. Appl. Phys.101(12), 123520 (2007). [CrossRef]
  34. A. I. Surdo and V. S. Kortov, “Exciton mechanism of energy transfer to F–centers in dosimetric corundum crystals,” Radiat. Meas.38(4-6), 667–671 (2004). [CrossRef]
  35. D. B. Fitchen, R. H. Silsbee, T. A. Fulton, and E. L. Wolf, “Zero-phonon transitions of color centers in alkali halides,” Phys. Rev. Lett.11(6), 275–277 (1963). [CrossRef]
  36. P. Görlich, H. Karras, G. Kötitz, and R. Rauch, “Phonon-assisted colour centre fluorescence of additively coloured alkali earth fluoride crystals,” Phys. Status Solidi, B Basic Res.25(1), K15–K18 (1968). [CrossRef]
  37. B. D. Evans and M. Stapelbroek, “Optical properties of the F+ center in crystalline Al2O3,” Phys. Rev. B18(12), 7089–7098 (1978). [CrossRef]
  38. M. G. Springils and J. A. Valbis, “Visible luminescence of colour centres in sapphire,” Phys. Status Solidi, B Basic Res.123(1), 335–343 (1984). [CrossRef]
  39. W. C. Wong, D. S. McClure, S. A. Basun, and M. R. Kokta, “Charge-exchange processes in titanium-doped sapphire crystals. I. Charge-exchange energies and titanium-bound excitons,” Phys. Rev. B Condens. Matter51(9), 5682–5692 (1995). [CrossRef] [PubMed]
  40. W. C. Wong, D. S. McClure, S. A. Basun, and M. R. Kokta, “Charge-exchange processes in titanium-doped sapphire crystals. II. Charge-transfer transition states, carrier trapping, and detrapping,” Phys. Rev. B Condens. Matter51(9), 5693–5698 (1995). [CrossRef] [PubMed]
  41. F. A. Kröger, The Chemistry of Imperfect Crystals (North Holland Publishing Company, Amsterdam, 1974).
  42. D. Manzani, Y. Ledemi, I. Skripachev, Y. Messaddeq, S. J. L. Ribeiro, R. E. P. de Oliveira, and C. J. S. de Matos, “Yb3+, Tm3+ and Ho3+ triply-doped tellurite core-cladding optical fiber for white light generation,” Opt. Mater. Express1(8), 1515–1526 (2011). [CrossRef]
  43. N. G. Boetti, J. Lousteau, D. Negro, E. Mura, G. Scarpignato, S. Abrate, and D. Milanese, “Multiple visible emissions by means of up-conversion process in a microstructured tellurite glass optical fiber,” Opt. Express20(5), 5409–5418 (2012). [CrossRef] [PubMed]
  44. X. Liu, B. Chen, E. Y. B. Pun, and H. Lin, “White upconversion luminescence in Tm3+/Ho3+/Yb3+ triply doped K+–Na+ ion-exchanged aluminum germinate glass channel waveguide,” Opt. Mater.35(3), 590–595 (2013). [CrossRef]
  45. T. T. Basiev, P. G. Zverev, and S. B. Mirov, Color Center Lasers, Handbook of Laser Technology and Applications (Institute of Physics Publishing, Bristol, 2003).
  46. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B3(1), 125–133 (1986). [CrossRef]
  47. C. G. Durfee, T. Storz, J. Garlick, S. Hill, J. A. Squier, M. Kirchner, G. Taft, K. Shea, H. Kapteyn, M. Murnane, and S. Backus, “Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser,” Opt. Express20(13), 13677–13683 (2012). [CrossRef] [PubMed]
  48. C. C. Lai, C. P. Ke, S. K. Liu, D. Y. Jheng, D. J. Wang, M. Y. Chen, Y. S. Li, P. S. Yeh, and S. L. Huang, “Efficient and low-threshold Cr4+:YAG double-clad crystal fiber laser,” Opt. Lett.36(6), 784–786 (2011). [CrossRef] [PubMed]
  49. C. C. Lai, P. Yeh, S. C. Wang, D. Y. Jheng, C. N. Tsai, and S. L. Huang, “Strain-dependent fluorescence spectroscopy of nanocrystals and nanoclusters in Cr:YAG crystalline-core fibers and its impact on lasing behaviors,” J. Phys. Chem. C116(49), 26052–26059 (2012). [CrossRef]
  50. R. D. Dupuis and M. R. Krames, “History, development, and applications of high-brightness visible light-emitting diodes,” J. Lightwave Technol.26(9), 1154–1171 (2008). [CrossRef]
  51. H. X. Jiang and J. Y. Lin, “Nitride micro-LEDs and beyond – a decade progress review,” Opt. Express21(S3), A475–A484 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited