OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14643–14648

All-solid all-chalcogenide microstructured optical fiber

Perrine Toupin, Laurent Brilland, Gilles Renversez, and Johann Troles  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14643-14648 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1419 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The realization of an all-solid microstructured optical fiber based on chalcogenide glasses was achieved. The fiber presents As2S3 inclusions selected as low refractive index material (n = 2.4) embedded in a As38Se62 glass matrix (n = 2.8). The single mode regime of the fiber was demonstrated both theoretically by multipole method calculations and experimentally by near field measurements. Optical transmission measurements of the microstructured fiber and single index fibers made of the initial glasses reveal an excess of losses as high as 6-7 dB/m. This excess is not due to the guide geometry but can be explained by the presence of defects in the glass interface regions.

© 2013 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(160.2750) Materials : Glass and other amorphous materials

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 29, 2013
Revised Manuscript: April 25, 2013
Manuscript Accepted: April 28, 2013
Published: June 13, 2013

Perrine Toupin, Laurent Brilland, Gilles Renversez, and Johann Troles, "All-solid all-chalcogenide microstructured optical fiber," Opt. Express 21, 14643-14648 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Kaiser, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Syst. Tech. J.52, 265–269 (1973).
  2. P. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J.53, 1021–1039 (1974).
  3. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996). [CrossRef] [PubMed]
  4. F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros, and S. Leon-Saval, Foundations of Photonic Crystal Fibres (Second Edition) (Imperial College, 2012).
  5. X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fiber,” Opt. Express11(18), 2225–2230 (2003). [CrossRef] [PubMed]
  6. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol.27(11), 1617–1630 (2009). [CrossRef]
  7. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. S. J. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express13(1), 309–314 (2005). [CrossRef] [PubMed]
  8. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. S. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett.29(20), 2369–2371 (2004). [CrossRef] [PubMed]
  9. J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express18(25), 26647–26654 (2010). [CrossRef] [PubMed]
  10. M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express18(5), 4547–4556 (2010). [CrossRef] [PubMed]
  11. J. A. Savage and S. Nielsen, “Chalcogenide glasses transmitting in the infrared between 1 and 20 μm — a state of the art review,” Infrared Phys.5(4), 195–204 (1965). [CrossRef]
  12. X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids326–327, 519–523 (2003). [CrossRef]
  13. G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater.45(13), 1439–1460 (2009). [CrossRef]
  14. L. Calvez, H. L. Ma, J. Lucas, and X. H. Zhang, “Glasses and glass-ceramics based on GeSe2-Sb2Se3 and halides for far infrared transmission,” J. Non-Cryst. Solids354(12-13), 1123–1127 (2008). [CrossRef]
  15. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett.36(24), 1998–2000 (2000). [CrossRef]
  16. L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express14(3), 1280–1285 (2006). [CrossRef] [PubMed]
  17. J. Le Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, “Light guidance in new chalcogenide holey fibres from GeGaSbS glass,” Mater. Res. Bull.41(7), 1303–1309 (2006). [CrossRef]
  18. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).
  19. Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett.21(24), 1804–1806 (2009). [CrossRef]
  20. M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity,” Opt. Express17(24), 21608–21614 (2009). [CrossRef] [PubMed]
  21. N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids356(35-36), 1829–1836 (2010). [CrossRef]
  22. Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J. C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express18(9), 9107–9112 (2010). [CrossRef] [PubMed]
  23. G. Renversez, F. Bordas, and B. T. Kuhlmey, “Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size,” Opt. Lett.30(11), 1264–1266 (2005). [CrossRef] [PubMed]
  24. L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn.116(1358), 1024–1027 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited