OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14649–14655

Chirped lasers dispersion spectroscopy implemented with single- and dual-sideband electro-optical modulators

Michal Nikodem, Genevieve Plant, Zhenxing Wang, Paul Prucnal, and Gerard Wysocki  »View Author Affiliations


Optics Express, Vol. 21, Issue 12, pp. 14649-14655 (2013)
http://dx.doi.org/10.1364/OE.21.014649


View Full Text Article

Enhanced HTML    Acrobat PDF (875 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report new approaches for signal generation in Chirped Laser Dispersion Spectroscopy (CLaDS). Two optical arrangements based on electro-optical modulators significantly reduce CLaDS system complexity and enable optimum performance when applied to detection of GHz-wide molecular transitions. Proof-of-principle experiments in the near-infrared spectral range are presented and potential strategies for application in the mid-infrared are discussed.

© 2013 OSA

OCIS Codes
(260.2030) Physical optics : Dispersion
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6390) Spectroscopy : Spectroscopy, molecular

ToC Category:
Spectroscopy

History
Original Manuscript: April 23, 2013
Revised Manuscript: June 3, 2013
Manuscript Accepted: June 5, 2013
Published: June 13, 2013

Citation
Michal Nikodem, Genevieve Plant, Zhenxing Wang, Paul Prucnal, and Gerard Wysocki, "Chirped lasers dispersion spectroscopy implemented with single- and dual-sideband electro-optical modulators," Opt. Express 21, 14649-14655 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-12-14649


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron.38(6), 582–591 (2002). [CrossRef]
  2. M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J Breath Res1(1), 014001 (2007). [CrossRef] [PubMed]
  3. E. Kerstel and L. Gianfrani, “Advances in laser-based isotope ratio measurements: selected applications,” Appl. Phys. B92(3), 439–449 (2008). [CrossRef]
  4. R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 microm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009). [CrossRef] [PubMed]
  5. G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt.48(29), 5546–5560 (2009). [CrossRef] [PubMed]
  6. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010). [CrossRef]
  7. S. Lundqvist, P. Kluczynski, R. Weih, M. von Edlinger, L. Nähle, M. Fischer, A. Bauer, S. Höfling, and J. Koeth, “Sensing of formaldehyde using a distributed feedback interband cascade laser emitting around 3493 nm,” Appl. Opt.51(25), 6009–6013 (2012). [CrossRef] [PubMed]
  8. B. Brumfield, W. Sun, Y. Ju, and G. Wysocki, “Direct In Situ Quantification of HO2 from a Flow Reactor,” J. Phys. Chem. Lett.4(6), 872–876 (2013). [CrossRef]
  9. G. Wysocki and D. Weidmann, “Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser,” Opt. Express18(25), 26123–26140 (2010). [CrossRef] [PubMed]
  10. M. Nikodem and G. Wysocki, “Chirped Laser Dispersion Spectroscopy for Remote Open-Path Trace-Gas Sensing,” Sensors (Basel)12(12), 16466–16481 (2012). [CrossRef] [PubMed]
  11. M. Nikodem, D. Weidmann, C. Smith, and G. Wysocki, “Signal-to-noise ratio in chirped laser dispersion spectroscopy,” Opt. Express20(1), 644–653 (2012). [CrossRef] [PubMed]
  12. M. Nikodem and G. Wysocki, “Molecular dispersion spectroscopy--new capabilities in laser chemical sensing,” Ann. N. Y. Acad. Sci.1260(1), 101–111 (2012). [CrossRef] [PubMed]
  13. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett.5(1), 15–17 (1980). [CrossRef] [PubMed]
  14. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B32(3), 145–152 (1983). [CrossRef]
  15. B. Hraimel, X. Zhang, Y. Pei, K. Wu, T. Liu, T. Xu, and Q. Nie, “Optical Single-Sideband Modulation With Tunable Optical Carrier to Sideband Ratio in Radio Over Fiber Systems,” J. Lightwave Technol.29(5), 775–781 (2011). [CrossRef]
  16. W. C. Swann and S. L. Gilbert, “Line centers, pressure shift, and pressure broadening of 1530-1560 nm hydrogen cyanide wavelength calibration lines,” J. Opt. Soc. Am. B22(8), 1749–1756 (2005). [CrossRef]
  17. D. Richter, A. Fried, and P. Weibring, “Difference frequency generation laser based spectrometers,” Laser Photonics Rev.3(4), 343–354 (2009). [CrossRef]
  18. M. Nikodem, K. Krzempek, G. Plant, K. Abramski, G. Wysocki, “Methane sensing at 3.4um using Chirped Laser Dispersion Spectroscopy with DFG source,” in CLEO/Europe-IQEC 2013 Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2013), paper CH-1.3.
  19. A. Hangauer, G. Spinner, M. Nikodem, and G. Wysocki, “Chirped Laser Dispersion Spectroscopy with Directly Modulated Quantum Cascade Laser,” in CLEO: Science and Innovations 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW1L.5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited