OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14662–14673

Optoperforation of single, intact Arabidopsis cells for uptake of extracellular dye-conjugated dextran

Megan L. LeBlanc, Travis R. Merritt, Jameel McMillan, James H. Westwood, and Giti A. Khodaparast  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14662-14673 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4768 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A plant science research goal is to manipulate single cells in an intact organism in order to study their interactions with neighboring cells. Based on a technique previously demonstrated in isolated plant cells, mammalian cells and cyanobacteria, Arabidopsis epidermal cells were optoperforated to allow for uptake of external cascade blue-labeled dextrans. Adverse organelle responses were determined to be minimal and dye retention was demonstrated for at least 72 hours. This technique overcomes the physical challenges presented by the plant cell wall and demonstrates the feasibility of in situ optoperforation.

© 2013 OSA

OCIS Codes
(040.3060) Detectors : Infrared
(170.1020) Medical optics and biotechnology : Ablation of tissue
(170.1420) Medical optics and biotechnology : Biology
(170.1530) Medical optics and biotechnology : Cell analysis
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: April 11, 2013
Revised Manuscript: May 29, 2013
Manuscript Accepted: May 31, 2013
Published: June 13, 2013

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics

Megan L. LeBlanc, Travis R. Merritt, Jameel McMillan, James H. Westwood, and Giti A. Khodaparast, "Optoperforation of single, intact Arabidopsis cells for uptake of extracellular dye-conjugated dextran," Opt. Express 21, 14662-14673 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Stevenson, F. J. Gunn-Moore, P. Campbell, and K. Dholakia, “Single cell optical transfection,” J. R. Soc. Interface7(47), 863–871 (2010). [CrossRef] [PubMed]
  2. R. Senz and G. Müller, “Laser in medicine,” Berich. Bunsen Gesell.93(3), 269–277 (1989). [CrossRef]
  3. G. Weber, S. Monajembashi, J. Wolfrum, and K.-O. Greulich, “Genetic changes induced in higher plant cells by a laser microbeam,” Physiol. Plant.79(1), 190–193 (1990). [CrossRef]
  4. Y. A. Badr, M. A. Kereim, M. A. Yehia, O. O. Fouad, and A. Bahieldin, “Production of fertile transgenic wheat plants by laser micropuncture,” Photochem. Photobiol. Sci.4(10), 803–807 (2005). [CrossRef] [PubMed]
  5. S. Eapen, “Pollen grains as a target for introduction of foreign genes into plants: an assessment,” Physiol. Mol. Biol. Plants17(1), 1–8 (2011). [CrossRef] [PubMed]
  6. S. C. Jeoung, M. S. Sidhu, J. S. Yahng, H. J. Shin, and G. Y. Baik, Advances in Lasers and Electro Optics (InTech, 2010), Chap. 35.
  7. D. D. Fernando, J. L. Richards, and J. R. Kikkert, “In vitro germination and transient GFP expression of American chestnut (Castanea dentata) pollen,” Plant Cell Rep.25(5), 450–456 (2006). [CrossRef] [PubMed]
  8. H. Schinkel, P. Jacobs, S. Schillberg, and M. Wehner, “Infrared picosecond laser for perforation of single plant cells,” Biotechnol. Bioeng.99(1), 244–248 (2008). [CrossRef] [PubMed]
  9. Y. Barbashov, A. Zalesskii, A. Aibushev, O. Sarkisov, M. Radtsig, I. Khmel’, O. Koksharova, and V. Nadtochenko, “Femtosecond optoperforation of the cell wall of cyanobacterium Anabaena sp. PCC 7120 in the presence of gold nanoparticles,” Nanotechnol. Russ.6(9-10), 668–675 (2011). [CrossRef]
  10. W. Tang, D. A. Weidner, B. Y. Hu, R. J. Newton, and X.-H. Hu, “Efficient delivery of small interfering RNA to plant cells by a nanosecond pulsed laser-induced stress wave for posttranscriptional gene silencing,” Plant Sci.171(3), 375–381 (2006). [CrossRef] [PubMed]
  11. T. Murashige and F. Skoog, “A Revised medium for rapid growth and bio assays with tobacco tissue cultures,” Physiol. Plant.15(3), 473–497 (1962). [CrossRef]
  12. G. Weber, S. Monajembashi, K. O. Greulich, and J. Wolfrum, “Microperforation of plant tissue with a UV laser microbeam and injection of DNA into cells,” Naturwissenschaften75(1), 35–36 (1988). [CrossRef]
  13. B. K. Nelson, X. Cai, and A. Nebenführ, “A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants,” Plant J.51(6), 1126–1136 (2007). [CrossRef] [PubMed]
  14. D. R. Hoagland and D. I. Arnon, “The water-culture method for growing plants without soil,” Circular. California Agricultural Experiment Station347, 1–32 (1950).
  15. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B.81(8), 1015–1047 (2005). [CrossRef]
  16. S. Grill and E. H. K. Stelzer, “Method to calculate lateral and axial gain factors of optical setups with a large solid angle,” J. Opt. Soc. Am. A16(11), 2658–2665 (1999). [CrossRef]
  17. K. König, “Multiphoton microscopy in life sciences,” J. Microsc.200(2), 83–104 (2000). [CrossRef] [PubMed]
  18. G. F. Marshall and G. E. Stutz, Handbook of Optical and Laser Scanning (Marcel Dekker, 2005).
  19. X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett.91(5), 053902 (2007). [CrossRef]
  20. P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng.2(1), 399–429 (2000). [CrossRef] [PubMed]
  21. C. Xu, R. M. Williams, W. Zipfel, and W. W. Webb, “Multiphoton excitation cross-sections of molecular fluorophores,” Bioimaging4(3), 198–207 (1996). [CrossRef]
  22. Z. Li, S. Renneckar, and J. Barone, “Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose,” Cellulose17(1), 57–68 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MP4 (1478 KB)     
» Media 2: MP4 (1889 KB)     
» Media 3: MP4 (1089 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited