OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14698–14711

A theoretical investigation of the laser damage threshold of metal multi-dielectric mirrors for high power ultrashort applications

Bin Wang and Laurent Gallais  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14698-14711 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (905 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An approach for the theoretical evaluation of the damage threshold in optical interference coatings that combine metal and dielectric films is presented. The model that is used combines a matrix formalism to describe the film system with the two temperatures model that describes the energy transfer and the temperatures of electrons and lattice in a solid submitted to a laser irradiation at the femtosecond time scale. With this approach the thermal consequences due to the ultrafast absorption of the metal film can be evaluated in the multilayer stack for single or multiple pulses. Some applications are presented for the case of broadband mirrors for ultrashort pulses with low dispersion. Particularly we study the impact of the metal film (metal element, thickness) and the design on the Laser Induced Damage Threshold in the sub picosecond regime.

© 2013 OSA

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(310.0310) Thin films : Thin films
(320.0320) Ultrafast optics : Ultrafast optics

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 4, 2013
Revised Manuscript: April 24, 2013
Manuscript Accepted: April 27, 2013
Published: June 13, 2013

Bin Wang and Laurent Gallais, "A theoretical investigation of the laser damage threshold of metal multi-dielectric mirrors for high power ultrashort applications," Opt. Express 21, 14698-14711 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. C. Stuart, M.D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B13, 459–468 (1996). [CrossRef]
  2. N. Bonod and J. Néauport, “Optical performance and laser induced damage threshold improvement of diffraction gratings used as compressors in ultra high intensity lasers,” Opt. Commun.260, 649–655 (2006). [CrossRef]
  3. F. Canova, O. Uteza, J.-P. Chambaret, M. Flury, S. Tonchev, R. Fechner, and O. Parriaux, “High-efficiency, broad band, high-damage threshold high-index gratings for femtosecond pulse compression,” Opt. Express15, 15324–15334 (2007). [CrossRef] [PubMed]
  4. S. Palmier, J. Néauport, N. Baclet, E. Lavastre, and G. Dupuy, “High reflection mirrors for pulse compression gratings,” Opt. Express17, 20430–20439 (2009). [CrossRef] [PubMed]
  5. J.H. Bechtel, “Heating of solid targets with laser pulses,” J. Appl. Phys.46, 1585–1593 (1975). [CrossRef]
  6. M. Mansipur, G.A. Neville Connell, and J.W. Goodman, “Laser-induced local heating of multilayers,” Appl. Opt.21, 1106–1114 (1982). [CrossRef]
  7. L. Gallais and M. Commandré, “Photothermal deflection in multilayer coatings: modeling and experiment,” Appl. Opt.44, 5230–5238 (2005). [CrossRef] [PubMed]
  8. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultra-short laser pulses,” Sov. Phys. JETP39, 375–377 (1974).
  9. R. Petit, Ondes Electomagnetiques (Dunod, 1989).
  10. P.B. Corkum, F. Brunel, N.K. Sherman, and T. Srinivasan-Rao, “Thermal responses of metals to ultrashort-pulse laser excitation,” Phys. Rev. Lett.61, 2686–2689 (1988). [CrossRef]
  11. Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B77, 75133–75133 (2008). [CrossRef]
  12. J. Hohlfeld, S. S. Wellershoff, J. Gdde, U. Conrad, V. Jahnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys.251, 237–258 (2000). [CrossRef]
  13. Y. Ren, J.K. Chen, and Y. Zhang, “Optical properties and thermal responses of copper films induced by ultrashort-pulsed lasers,” J. Appl. Phys.110, 113102 (2011). [CrossRef]
  14. Matlab PDE solver http://www.mathworks.com .
  15. M.J. Webber, Handbook of Optical Materials (CRC Press, 2003).
  16. H.A. Macleod, Thin-film Optical Filters (CRC Press, 2001). [CrossRef]
  17. S. S. Wellershoff, J. Hohlfeld, J. Gdde, and E. Matthias, “The role of electron phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A69, S99–S107 (1999).
  18. J. Kruger, D. Dufft, R. Koter, and A. Hertwig, “Femtosecond laser-induced damage of gold films,” Appl. Surf. Sci.253, 7815–7819 (2007). [CrossRef]
  19. Y. Dai, M. He, H. Bian, B. Lu, X. Yan, and G. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys. A106, 567–574 (2012). [CrossRef]
  20. M. Kimmel, P. Rambo, R. Broyles, M. Geissel, J. Schwarz, J. Bellum, and B. Atherton, “Optical damage testing at the Z-Backlighter facility at Sandia National Laboratories,” Proc. SPIE7504, 75041G (2009). [CrossRef]
  21. L. Gallais, E. Bergeret, B. Wang, M. Guerin, and E. Benevent, “Ultrafast laser ablation of metal films on flexible substrates,” submitted.
  22. X. Y. Wang, D. M. Riffe, Y.-S. Lee, and M. C. Downer, “Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission,” Phys. Rev. B50, 8016–8019 (1994). [CrossRef]
  23. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B71, 115109 (2005). [CrossRef]
  24. B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kicas, T. Tolenis, and R. Drazdys, “Femtosecond laser damage resistance of oxide and mixture oxide optical coatings,” Opt. Lett.37, 1478–1480 (2012). [CrossRef] [PubMed]
  25. J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, A. Kozlov, C. Smith, and R. D. Hand, “Stress compensation in hafnia/silica optical coatings by inclusion of alumina layers,” Opt. Express20, 16596–16610 (2012). [CrossRef]
  26. C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3for optical interference coatings,” Proc. SPIE7842, 784202 (2010). [CrossRef]
  27. M. Mende, H. Ehlers, D. Ristau, and L. Gallais, “Laser damage resistance of ion-beam sputtered Sc2O3/SiO2mixture optical coatings,” Appl. Opt.52, 1368–1376 (2013). [CrossRef] [PubMed]
  28. M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng.44, 051107 (2005). [CrossRef]
  29. L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys.108, 0435523 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited