OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14763–14770

Enhanced refractive index sensitivity of elevated short-range ordered nanohole arrays in optically thin plasmonic Au films

Vladimir E. Bochenkov, Maj Frederiksen, and Duncan S. Sutherland  »View Author Affiliations


Optics Express, Vol. 21, Issue 12, pp. 14763-14770 (2013)
http://dx.doi.org/10.1364/OE.21.014763


View Full Text Article

Enhanced HTML    Acrobat PDF (1895 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A simple development of the colloidal lithography technique is demonstrated for fabrication of perforated plasmonic metal films elevated above the substrate surface. The bulk refractive index sensitivity of short-range ordered nanohole arrays in 20 nm thick Au films exhibits an increase of up to 37% due to reduction of substrate effect caused by lifting with a 40 nm silica layer. Analysis of the local electric field distribution suggests that the sensitivity increase is due to revealing of the enhanced field near the holes.

© 2013 OSA

OCIS Codes
(130.6010) Integrated optics : Sensors
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(250.5403) Optoelectronics : Plasmonics
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Sensors

History
Original Manuscript: May 16, 2013
Revised Manuscript: June 4, 2013
Manuscript Accepted: June 7, 2013
Published: June 13, 2013

Citation
Vladimir E. Bochenkov, Maj Frederiksen, and Duncan S. Sutherland, "Enhanced refractive index sensitivity of elevated short-range ordered nanohole arrays in optically thin plasmonic Au films," Opt. Express 21, 14763-14770 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-12-14763


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010). [CrossRef] [PubMed]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  3. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science339(6125), 1232009–12320096 (2013). [CrossRef] [PubMed]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  5. E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett.7(5), 1256–1263 (2007). [CrossRef] [PubMed]
  6. A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett.8(11), 3893–3898 (2008). [CrossRef] [PubMed]
  7. M. A. Otte, M. C. Estevez, L. G. Carrascosa, A. B. Gonzalez-Guerrero, L. M. Lechuga, and B. Sepulveda, “Improved biosensing capability with novel suspended nanodisks,” J. Phys. Chem. C115(13), 5344–5351 (2011). [CrossRef]
  8. P. Hanarp, D. S. Sutherland, J. Gold, and B. Kasemo, “Control of nanoparticle film structure for colloidal lithography,” Colloids Surf.214(1-3), 23–36 (2003). [CrossRef]
  9. J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett.4(6), 1003–1007 (2004). [CrossRef]
  10. L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano4(4), 2167–2177 (2010). [CrossRef] [PubMed]
  11. A. B. Dahlin, P. Jönsson, M. P. Jonsson, E. Schmid, Y. Zhou, and F. Höök, “Synchronized quartz crystal microbalance and nanoplasmonic sensing of biomolecular recognition reactions,” ACS Nano2(10), 2174–2182 (2008). [CrossRef] [PubMed]
  12. T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small7(12), 1653–1663 (2011). [CrossRef] [PubMed]
  13. S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, and A. Dmitriev, “Ultrahigh sensitivity made simple: Nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics,” Nanotechnology20(43), 434015 (2009). [CrossRef] [PubMed]
  14. M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett.9(12), 4428–4433 (2009). [CrossRef] [PubMed]
  15. C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett.98(15), 153108 (2011). [CrossRef] [PubMed]
  16. B. Brian, B. Sepúlveda, Y. Alaverdyan, L. M. Lechuga, and M. Käll, “Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates,” Opt. Express17(3), 2015–2023 (2009). [CrossRef] [PubMed]
  17. B. Liedberg, C. Nylander, and I. Lunström, “Surface-plasmon resonance for gas-detection and biosensing,” Sens. Actuators4, 299–304 (1983). [CrossRef]
  18. X. M. Zhang, Z. B. Li, S. S. Ye, S. Wu, J. H. Zhang, L. Y. Cui, A. R. Li, T. Q. Wang, S. Z. Li, and B. Yang, “Elevated ag nanohole arrays for high performance plasmonic sensors based on extraordinary optical transmission,” J. Mater. Chem.22(18), 8903–8910 (2012). [CrossRef]
  19. J. Junesch, T. Sannomiya, and A. B. Dahlin, “Optical properties of nanohole arrays in metal-dielectric double films prepared by mask-on-metal colloidal lithography,” ACS Nano6(11), 10405–10415 (2012). [CrossRef] [PubMed]
  20. Y. Ikenoya, M. Susa, J. Shi, Y. Nakamura, A. B. Dahlin, and T. Sannomiya, “Optical resonances in short-range ordered nanoholes in ultrathin aluminum/aluminum nitride multilayers,” J. Phys. Chem. C117(12), 6373–6382 (2013). [CrossRef]
  21. C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B105(24), 5599–5611 (2001). [CrossRef]
  22. P. Hanarp, M. Kall, and D. S. Sutherland, “Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography,” J. Phys. Chem. B107(24), 5768–5772 (2003). [CrossRef]
  23. V. E. Bochenkov and D. S. Sutherland, “From rings to crescents: A novel fabrication technique uncovers the transition details,” Nano Lett.13(3), 1216–1220 (2013). [CrossRef] [PubMed]
  24. . Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. GarciadeAbajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C111(3), 1207–1212 (2007). [CrossRef]
  25. A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem.36(8), 1627–1639 (1964). [CrossRef]
  26. M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B109(46), 21556–21565 (2005). [CrossRef] [PubMed]
  27. FDTD solutions”, http://www.lumerical.com/tcad-products/fdtd/ .
  28. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Supplementary Material


» Media 1: PDF (736 KB)     
» Media 2: PDF (398 KB)     
» Media 3: PDF (78 KB)     
» Media 4: PDF (59 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited