OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14780–14788

Ultrasmooth reaction-sintered silicon carbide surface resulting from combination of thermal oxidation and ceria slurry polishing

Xinmin Shen, Yifan Dai, Hui Deng, Chaoliang Guan, and Kazuya Yamamura  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14780-14788 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (11031 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An ultrasmooth reaction-sintered silicon carbide surface with an rms roughness of 0.424 nm is obtained after thermal oxidation for 30 min followed by ceria slurry polishing for 30 min. By SEM-EDX analysis, we investigated the thermal oxidation behavior of RS-SiC, in which the main components are Si and SiC. As the oxidation rate is higher in the area with defects, there are no scratches or cracks on the surface after oxidation. However, a bumpy structure is formed after oxidation because the oxidation rates of Si and SiC differ. Through a theoretical analysis of thermal oxidation using the Deal-Grove model and the removal of the oxide layer by ceria slurry polishing in accordance with the Preston equation, a model for obtaining an ultrasmooth surface is proposed and the optimal processing conditions are presented.

© 2013 OSA

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.4670) Materials : Optical materials
(220.5450) Optical design and fabrication : Polishing
(240.5770) Optics at surfaces : Roughness
(350.6090) Other areas of optics : Space optics

ToC Category:

Original Manuscript: May 3, 2013
Revised Manuscript: June 6, 2013
Manuscript Accepted: June 7, 2013
Published: June 13, 2013

Xinmin Shen, Yifan Dai, Hui Deng, Chaoliang Guan, and Kazuya Yamamura, "Ultrasmooth reaction-sintered silicon carbide surface resulting from combination of thermal oxidation and ceria slurry polishing," Opt. Express 21, 14780-14788 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Dai, “Surface finishing of new type RS-SiC ceramics,” Int. J. Comput. Appl. Tech.29(2/3/4), 145–149 (2007). [CrossRef]
  2. D. A. Ersoy, M. J. McNallan, and Y. Gogotsi, “Carbon coatings produced by high temperature chlorination of silicon carbide ceramics,” Mat. Res. Innovat.5(2), 55–62 (2001). [CrossRef]
  3. S. P. Lee, Y. S. Shin, D. S. Bae, B. H. Min, J. S. Park, and A. Kohyama, “Fabrication of liquid phase sintered SiC materials and their characterization,” Fusion Eng. Des.81(8-14), 963–967 (2006). [CrossRef]
  4. A. Sayano, C. Sutoh, S. Suyama, Y. Itoh, and S. Nakagawa, “Development of a reaction-sintered silicon carbide matrix composite,” J. Nucl. Mater.271–272, 467–471 (1999). [CrossRef]
  5. S. Suyama, T. Kameda, and Y. Itoh, “Development of high-strength reaction-sintered silicon carbide,” Diamond Related Materials12(3–7), 1201–1204 (2003). [CrossRef]
  6. Y. W. Kim, M. Mitomo, H. Emoto, and J. G. Lee, “Effect of initial α‐phase content on microstructure and mechanical properties of sintered silicon carbide,” J. Am. Ceram. Soc.81(12), 3136–3140 (1998). [CrossRef]
  7. O. P. Chakrabarti, P. K. Das, and J. Mukerji, “Growth of SiC particles in reaction sintered SiC,” Mater. Chem. Phys.67(1–3), 199–202 (2001). [CrossRef]
  8. T. Grande, H. Sommerset, E. Hagen, K. Wiik, and M. A. Einarsrud, “Effect of weight loss on liquid-phase-sintered silicon carbide,” J. Am. Ceram. Soc.80(4), 1047–1052 (1997). [CrossRef]
  9. S. S. Shinozaki, J. E. Noakes, and H. Sato, “Recrystallization and phase transformation in reaction-Sintered SiC,” J. Am. Ceram. Soc.61(5–6), 237–242 (1978). [CrossRef]
  10. J. Yan, Z. Zhang, and T. Kuriyagawa, “Mechanism for material removal in diamond turning of reaction-bonded silicon carbide,” Int. J. Mach. Tools Manuf.49(5), 366–374 (2009). [CrossRef]
  11. H. Y. Tam, H. B. Cheng, and Y. W. Wang, “Removal rate and surface roughness in the lapping and polishing of RB-SiC optical components,” J. Mater. Process. Technol.192–193, 276–280 (2007). [CrossRef]
  12. H. Deng and K. Yamamura, “Smoothing of reaction sintered silicon carbide using plasma assisted polishing,” Curr. Appl. Phys.12(3), S24–S28 (2012). [CrossRef]
  13. K. Yamamura, Y. Yamamoto, and H. Deng, “Preliminary study on chemical figuring and finishing of sintered sic substrate using atmospheric pressure plasma,” Procedia CIRP3, 335–339 (2012). [CrossRef]
  14. E. A. Irene, H. Z. Massoud, and E. Tierney, “Silicon oxidation studies: Silicon orientation effects on thermal oxidation,” J. Electrochem. Soc.133(6), 1253–1256 (1986). [CrossRef]
  15. H. C. Lu, T. Gustafsson, E. P. Gusev, and E. Garfunkel, “An isotopic labeling study of the growth of thin oxide films on Si (100),” Appl. Phys. Lett.67(12), 1742–1744 (1995). [CrossRef]
  16. J. Blanc, “A revised model for the oxidation of Si by oxygen,” Appl. Phys. Lett.33(5), 424–426 (1978). [CrossRef]
  17. Y. Song, S. Dhar, L. C. Feldman, G. Chung, and J. R. Williams, “Modified Deal Grove model for the thermal oxidation of silicon carbide,” J. Appl. Phys.95(9), 4953–4957 (2004). [CrossRef]
  18. B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys.36(12), 3770–3778 (1965). [CrossRef]
  19. A. Fargeix and G. Ghibaudo, “Dry oxidation of silicon: A new model of growth including relaxation of stress by viscous flow,” J. Appl. Phys.54(12), 7153–7158 (1983). [CrossRef]
  20. A. Fargeix, G. Ghibaudo, and G. Kamarinos, “A revised analysis of dry oxidation of silicon,” J. Appl. Phys.54(5), 2878–2880 (1983). [CrossRef]
  21. C. W. Liu, B. T. Dai, W. T. Tseng, and C. F. Yeh, “Modeling of the wear mechanism during chemical-mechanical polishing,” J. Electrochem. Soc.143(2), 716–721 (1996). [CrossRef]
  22. Q. Luo, S. Ramarajan, and S. V. Babu, “Modification of the Preston equation for the chemical–mechanical polishing of copper,” Thin Solid Films335(1–2), 160–167 (1998). [CrossRef]
  23. F. G. Shi and B. Zhao, “Modeling of chemical-mechanical polishing with soft pads,” Appl. Phys., A Mater. Sci. Process.67(2), 249–252 (1998). [CrossRef]
  24. J. Qian, G. Voronin, T. W. Zerda, D. He, and Y. Zhao, “High pressure, high temperature sintering of diamond-SiC composites by ball milled diamond-Si mixtures,” J. Mater. Res.17(8), 2153–2160 (2002). [CrossRef]
  25. A. B. Shorey, K. M. Kwong, K. M. Johnson, and S. D. Jacobs, “Nanoindentation hardness of particles used in magnetorheological finishing (MRF),” Appl. Opt.39(28), 5194–5204 (2000). [CrossRef] [PubMed]
  26. E. Pippel, J. Woltersdorf, H. O. Olafsson, and E. O. Sveimbjornsson, “Interfaces between 4H-SiC and SiO2: microstructure, nanochemistry and near-interface traps,” J. Appl. Phys.97(3), 034302 (2005). [CrossRef]
  27. . S. Williams, B. Haberl, and J. E. Bradby, “Nanoindentation of ion implanted and deposited amorphous silicon,” Mat. Res. Soc. 843, T6.3.1/R10.3.1- T6.3.5/R10.3.5 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited