OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14789–14798

Enhanced, fast-running scaling law model of thermal blooming and turbulence effects on high energy laser propagation

Noah R. Van Zandt, Steven T. Fiorino, and Kevin J. Keefer  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14789-14798 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2694 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new scaling law model is presented to rapidly simulate thermal blooming and turbulence effects on high energy laser propagation, producing results approaching the quality normally only available using wave-optics code, but at much faster speed. The model convolves irradiance patterns originating from two distinct scaling law models, one with a proficiency in thermal blooming effects and the other in turbulence. To underscore the power of the new model, results are verified for typical, realistic scenarios by direct comparison with wave optics simulation.

© 2013 OSA

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.7060) Atmospheric and oceanic optics : Turbulence

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: April 8, 2013
Revised Manuscript: June 1, 2013
Manuscript Accepted: June 3, 2013
Published: June 13, 2013

Noah R. Van Zandt, Steven T. Fiorino, and Kevin J. Keefer, "Enhanced, fast-running scaling law model of thermal blooming and turbulence effects on high energy laser propagation," Opt. Express 21, 14789-14798 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. T. Yura, “Atmospheric turbulence induced laser beam spread,” Appl. Opt.10(12), 2771–2773 (1971). [CrossRef] [PubMed]
  2. H. Breaux, W. Evers, R. Sepucha, and C. Whitney, “Algebraic model for cw thermal-blooming effects,” Appl. Opt.18(15), 2638–2644 (1979). [CrossRef] [PubMed]
  3. F. G. Gebhardt, “Twenty-five years of thermal blooming: an overview,” Proc. SPIE1221, 2–25 (1990). [CrossRef]
  4. R. J. Bartell, G. P. Perram, S. T. Fiorino, S. N. Long, M. J. Houleb, C. A. Rice, Z. P. Manning, D. W. Bunch, M. J. Krizo, and L. E. Gravley, “Methodology for comparing worldwide performance of diverse weight-constrained high energy laser systems,” Proc. SPIE5792, 76–87 (2005). [CrossRef]
  5. N. R. Van Zandt, S. J. Cusumano, R. J. Bartell, S. Basu, J. E. McCrae, and S. T. Fiorino, “Comparison of coherent and incoherent laser beam combination for tactical engagements,” Opt. Eng.51(10), 104301 (2012). [CrossRef]
  6. A. M. Ngwele and M. R. Whiteley, “Scaling Law Modeling of Thermal Blooming in Wave Optics,” MZA Associates Corporation, Dayton, Technical Report NGIT ABL A&AS, 2006.
  7. S. T. Fiorino, R. M. Randall, M. F. Via, and J. L. Burley, “Validation of a UV to RF high spectral resolution atmospheric boundary layer characterization tool,” J. Appl. Meteorol. Climatol. (in review).
  8. S. T. Fiorino, R. M. Randall, R. J. Bartell, A. D. Downs, P. C. Chu, and C. W. Fan, “Climate change: anticipated effects on high-energy laser weapon systems in maritime environments,” J. Appl. Meteorol. Climatol.50(1), 153–166 (2011). [CrossRef]
  9. C. L. Leakeas, R. J. Bartell, M. J. Krizo, S. T. Fiorino, S. J. Cusumano, and M. R. Whiteley, “Effects of thermal blooming on systems comprised of tiled subapertures,” Proc. SPIE7685, 267–269 (2010). [CrossRef]
  10. M. R. Whiteley, E. P. Magee, and A. M. Ngwele, “Scaling for High Energy Laser and Relay Engagement (SHaRE) User Guide,” MZA Associates, Dayton OH, (2011).
  11. M. R. Whiteley, “Thermal Blooming Modeling in SHaRE,” presented at the DoD High Energy Laser Joint Technology Office Workshop, Air Force Institute of Technology, WPAFB, OH, 9–10 Oct. 2008.
  12. S. C. Coy and B. P. Venet, “WaveTrainTM User Guide” (MZA Associates Corporation, Copyright © 1995 – 2010), http://www.mza.com/doc/wavetrain/wtug/index.htm .
  13. SAIC Final Report, “Analytic Model for Adaptive Optical Compensation of Thermal Blooming (AOTB),” Govt Contract #FA9451–10-D-0250, (2012).
  14. J. D. Barchers, “Linear analysis of thermal blooming compensation instabilities in laser propagation,” J. Opt. Soc. Am. A26(7), 1638–1653 (2009). [CrossRef] [PubMed]
  15. R. A. Motes, S. A. Shakir, and R. W. Berdine, “An efficient scalar, non-paraxial beam propagation method,” J. Lightwave Technol.30(1), 4–8 (2012). [CrossRef]
  16. B. G. Ward, “Modeling of transient modal instability in fiber amplifiers,” Opt. Express21(10), 12053–12067 (2013). [CrossRef]
  17. S. T. Fiorino, R. M. Randall, F. J. Echeverria, R. J. Bartell, M. J. Krizo, and S. J. Cusumano, “Effectiveness assessment of tactical laser engagement scenarios in the lower atmosphere,” J. Aero. Inf. Sys.10(1), 32–38 (2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited