OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14808–14815

Reflection spectra of etched FBGs under the influence of axial contraction and stress-induced index change

Hang-Zhou Yang, Kok-Sing Lim, Xue-Guang Qiao, Wu-Yi Chong, Yew-Ken Cheong, Weng-Hong Lim, Wei-Sin Lim, and Harith Ahmad  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14808-14815 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1150 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new theoretical model for the broadband reflection spectra of etched FBGs which includes the effects of axial contraction and stress-induced index change. The reflection spectra of the etched FBGs with several different taper profiles are simulated based on the proposed model. In our observation, decaying exponential profile produces a broadband reflection spectrum with good uniformity over the range of 1540-1560 nm. An etched FBG with similar taper profile is fabricated and the experimental result shows good agreement with the theoretical model.

© 2013 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(230.1150) Optical devices : All-optical devices
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 16, 2013
Revised Manuscript: May 26, 2013
Manuscript Accepted: June 10, 2013
Published: June 14, 2013

Hang-Zhou Yang, Kok-Sing Lim, Xue-Guang Qiao, Wu-Yi Chong, Yew-Ken Cheong, Weng-Hong Lim, Wei-Sin Lim, and Harith Ahmad, "Reflection spectra of etched FBGs under the influence of axial contraction and stress-induced index change," Opt. Express 21, 14808-14815 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol.15(8), 1263–1276 (1997). [CrossRef]
  2. C. Li, N. Chen, Z. Chen, and T. Wang, “Fully distributed chirped FBG sensor and application in laser-induced interstitial thermotherapy,” Communications and Photonics Conference and Exhibition (ACP), 2009 Asia, vol.2009-Supplement, 1,6, 2–6 (2009).
  3. Y. Takubo and S. Yamashita, “High-speed dispersion-tuned wavelength-swept fiber laser using a reflective SOA and a chirped FBG,” Opt. Express21(4), 5130–5139 (2013). [CrossRef] [PubMed]
  4. K. C. Byron, K. Sugden, T. Bricheno, and I. Bennion, “Fabrication of chirped Bragg gratings in photosensitive fiber,” Electron. Lett.29(18), 1659–1660 (1993). [CrossRef]
  5. F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, “Design and fabrication of double-chirped mirrors,” Opt. Lett.22(11), 831–833 (1997). [CrossRef] [PubMed]
  6. C. Lu, J. Cui, and Y. Cui, “Reflection spectra of fiber Bragg gratings with random fluctuations,” Opt. Fiber Technol.14(2), 97–101 (2008). [CrossRef]
  7. J. Mora, J. Villatoro, A. Dıez, J. L. Cruz, and M. V. Andres, “Tunable chirp in Bragg gratings written in tapered core fibers,” Opt. Commun.210(1-2), 51–55 (2002). [CrossRef]
  8. J. Mora, A. Diez, M. V. Andres, P. Y. Fonjallaz, and M. Popov, “Tunable dispersion compensator based on a fiber Bragg grating written in a tapered fiber,” IEEE Photon. Technol. Lett.16(12), 2631–2633 (2004). [CrossRef]
  9. N. Q. Ngo, S. Y. Li, R. T. Zheng, S. C. Tjin, and P. Shum, “Electrically tunable dispersion compensator with fixed center wavelength using fiber Bragg grating,” J. Lightwave Technol.21(6), 1568–1575 (2003). [CrossRef]
  10. J. L. Cruz, L. Dong, S. Barcelos, and L. Reekie, “Fiber Bragg gratings with various chirp profiles made in etched tapers,” Appl. Opt.35(34), 6781–6787 (1996). [CrossRef] [PubMed]
  11. L. Dong, J. L. Cruz, L. Reekie, and J. A. Tucknott, “Fabrication of chirped fiber gratings using etched tapers,” Electron. Lett.31(11), 908–909 (1995). [CrossRef]
  12. X. Dong, P. Shum, N. Ngo, C. Chan, J. Ng, and C. Zhao, “A largely tunable CFBG-based dispersion compensator with fixed center wavelength,” Opt. Express11(22), 2970–2974 (2003). [CrossRef] [PubMed]
  13. Z. Li, Z. Chen, V. K. S. Hsiao, J. Y. Tang, F. Zhao, and S. J. Jiang, “Optically tunable chirped fiber Bragg grating,” Opt. Express20(10), 10827–10832 (2012). [CrossRef] [PubMed]
  14. M. G. Sceats, G. R. Atkins, and S. B. Poole, “Photolytic index changes in optical fibers,” Annu. Rev. Mater. Sci.23(1), 381–410 (1993). [CrossRef]
  15. K. S. Lim, H. Z. Yang, W. Y. Chong, Y. K. Cheong, C. H. Lim, N. M. Ali, and H. Ahmad, “Axial contraction in etched optical fiber due to internal stress reduction,” Opt. Express21(3), 2551–2562 (2013). [CrossRef] [PubMed]
  16. A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett.17(6), 1253–1255 (2005). [CrossRef]
  17. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett.86(15), 151122 (2005). [CrossRef]
  18. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997). [CrossRef]
  19. T. Erdogan, “Cladding-mode resonances in short-and long-period fiber grating filters,” J. Opt. Soc. Am. A14(8), 1760–1773 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited