OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14816–14831

Cytometric sorting based on the fluorescence lifetime of spectrally overlapping signals

Ruofan Cao, Varayini Pankayatselvan, and Jessica P. Houston  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14816-14831 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1152 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Flow cytometry is a well-established and powerful high- throughput fluorescence measurement tool that also allows for the sorting and enrichment of subpopulations of cells expressing unique fluorescence signatures. Owing to the reliance on intensity-only signals, flow cytometry sorters cannot easily discriminate between fluorophores that spectrally overlap. In this paper we demonstrate a new method of cell sorting using a fluorescence lifetime-dependent methodology. This approach, referred to herein as phase-filtered cell sorting (PFCS), permits sorting based on the average fluorescence lifetime of a fluorophore by separating fluorescence signals from species that emit differing average fluorescence lifetimes. Using lifetime-dependent hardware, cells and microspheres labeled with fluorophores were sorted with purities up to 90%. PFCS is a practical approach for separating populations of cells that are stained with spectrally overlapping fluorophores or that have interfering autofluorescence signals.

© 2013 OSA

OCIS Codes
(170.1420) Medical optics and biotechnology : Biology
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: April 16, 2013
Revised Manuscript: June 5, 2013
Manuscript Accepted: June 6, 2013
Published: June 14, 2013

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics

Ruofan Cao, Varayini Pankayatselvan, and Jessica P. Houston, "Cytometric sorting based on the fluorescence lifetime of spectrally overlapping signals," Opt. Express 21, 14816-14831 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. J. Fulwyler, “Electronic separation of biological cells by volume,” Science150(3698), 910–911 (1965). [CrossRef] [PubMed]
  2. W. A. Bonner, H. R. Hulett, R. G. Sweet, and L. A. Herzenberg, “Fluorescence activated cell sorting,” Rev. Sci. Instrum.43(3), 404–409 (1972). [CrossRef] [PubMed]
  3. J. A. Steinkamp, M. J. Fulwyler, J. R. Coulter, R. D. Hiebert, J. L. Horney, and P. F. Mullancy, “A new multiparameter separator for microscopic particles and biological cells,” Rev. Sci. Instrum.44(9), 1301–1310 (1973). [CrossRef] [PubMed]
  4. J. H. Jett and R. G. Alexander, “Droplet sorting of large particles,” Cytometry6(5), 484–486 (1985). [CrossRef] [PubMed]
  5. M. F. Bartholdi, J. D. Parson, K. A. Albright, and L. S. Cram, “System for flow sorting chromosomes on the basis of pulse shape,” Cytometry11(1), 165–172 (1990). [CrossRef] [PubMed]
  6. J. R. Lakowicz, Time-resolved laser Spectroscopy in Biochemistry (1988).
  7. B. G. Pinsky, J. J. Ladasky, J. R. Lakowicz, K. Berndt, and R. A. Hoffman, “Phase-resolved fluorescence lifetime measurements for flow cytometry,” Cytometry14(2), 123–135 (1993). [CrossRef] [PubMed]
  8. C. Deka, L. A. Sklar, and J. A. Steinkamp, “Fluorescence lifetime measurements in a flow cytometer by amplitude demodulation using digital data acquisition technique,” Cytometry17(1), 94–101 (1994). [CrossRef] [PubMed]
  9. J. A. Steinkamp, “Phase-sensitive detection methods for resolving fluorescence emission signals and directly quantifying lifetime,” Methods in cell biology 42, 627–640 (1994).
  10. J. A. Steinkamp and H. A. Crissman, “Resolution of fluorescence signals from cells labeled with fluorochromes having different lifetimes by phase-sensitive flow cytometry,” Cytometry14(2), 210–216 (1993). [CrossRef] [PubMed]
  11. J. A. Steinkamp, B. E. Lehnert, and N. M. Lehnert, “Discrimination of damaged/dead cells by propidium iodide uptake in immunofluorescently labeled populations analyzed by phase-sensitive flow cytometry,” J. Immunol. Methods226(1-2), 59–70 (1999). [CrossRef] [PubMed]
  12. D. Baskić, S. Popović, P. Ristić, and N. N. Arsenijević, “Analysis of cycloheximide-induced apoptosis in human leukocytes: fluorescence microscopy using annexin V/propidium iodide versus acridin orange/ethidium bromide,” Cell Biol. Int.30(11), 924–932 (2006). [CrossRef] [PubMed]
  13. M. Edidin, “A rapid, quantitative fluorescence assay for cell damage by cytotoxic antibodies,” J. Immunol.104(5), 1303–1306 (1970). [PubMed]
  14. J. P. Houston, M. A. Naivar, and J. P. Freyer, “Digital analysis and sorting of fluorescence lifetime by flow cytometry,” Cytometry A.77, 861-872 (2010).
  15. P. Jenkins, M. A. Naivar, and J. P. Houston, 1040 South Horseshoe Drive Las Cruces, NM 88003 are revising a mansucript to be called “Multi-frequency flow cytometry.”
  16. J. P. Houston, M. A. Naivar, and J. P. Freyer, “Capture of fluorescence decay times by flow cytometry,” Current Protocols in Flow Cytometry, Chapter 1: Unit 1.25 Jan (2012).
  17. K. H. Jones and J. A. Senft, “An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide,” The journal of histochemistry and cytochemistry: official journal of the Histochemistry Society 33, 77–79 (1985).
  18. A. Krishan, “Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining,” J. Cell Biol.66(1), 188–193 (1975). [CrossRef] [PubMed]
  19. R. M. Böhmer and J. Ellwart, “Cell cycle analysis by combining the 5-bromodeoxyuridine/33258 Hoechst technique with DNA-specific ethidium bromide staining,” Cytometry2(1), 31–34 (1981). [CrossRef] [PubMed]
  20. J. K. Larsen, B. Munch-Petersen, J. Christiansen, and K. Jørgensen, “Flow cytometric discrimination of mitotic cells: resolution of M, as well as G1, S, and G2 phase nuclei with mithramycin, propidium iodide, and ethidium bromide after fixation with formaldehyde,” Cytometry7(1), 54–63 (1986). [CrossRef] [PubMed]
  21. D. P. Heller and C. L. Greenstock, “Fluorescence lifetime analysis of DNA intercalated ethidium bromide and quenching by free dye,” Biophys. Chem.50(3), 305–312 (1994). [CrossRef] [PubMed]
  22. J. A. Steinkamp and J. F. Keij, “Fluorescence intensity and lifetime measurement of free and particle-bound fluorophore in a sample stream by phase-sensitive flow cytometry,” Journal Name: Rev. Sci. Instrum.70(12), 4682–4688 (1999). [CrossRef]
  23. M. A. Naivar, J. D. Parson, M. E. Wilder, R. C. Habbersett, B. S. Edwards, L. Sklar, J. P. Nolan, S. W. Graves, J. C. Martin, J. H. Jett, and J. P. Freyer, “Open, reconfigurable cytometric acquisition system: ORCAS,” Cytometry A. 71, 915–924 (2007).
  24. T. C. George, D. A. Basiji, B. E. Hall, D. H. Lynch, W. E. Ortyn, D. J. Perry, M. J. Seo, C. A. Zimmerman, and P. J. Morrissey, “Distinguishing modes of cell death using the ImageStream multispectral imaging flow cytometer,” Cytometry A59A(2), 237–245 (2004). [CrossRef] [PubMed]
  25. A. Mittag, D. Lenz, A. O. H. Gerstner, U. Sack, M. Steinbrecher, M. Koksch, A. Raffael, J. Bocsi, and A. Tárnok, “Polychromatic (eight-color) slide-based cytometry for the phenotyping of leukocyte, NK, and NKT subsets,” Cytometry A65A(2), 103–115 (2005). [CrossRef] [PubMed]
  26. S. C. De Rosa, L. A. Herzenberg, L. A. Herzenberg, and M. Roederer, “11-color, 13-parameter flow cytometry: identification of human naive T cells by phenotype, function, and T-cell receptor diversity,” Nat. Med.7(2), 245–248 (2001). [CrossRef] [PubMed]
  27. N. Baumgarth and M. Roederer, “A practical approach to multicolor flow cytometry for immunophenotyping,” J. Immunol. Methods243(1-2), 77–97 (2000). [CrossRef] [PubMed]
  28. S. C. De Rosa, J. M. Brenchley, and M. Roederer, “Beyond six colors: a new era in flow cytometry,” Nat. Med.9(1), 112–117 (2003). [CrossRef] [PubMed]
  29. M. Roederer, S. De Rosa, R. Gerstein, M. Anderson, M. Bigos, R. Stovel, T. Nozaki, D. Parks, L. Herzenberg, and L. Herzenberg, “8 Color, 10-parameter flow cytometry to elucidate complex leukocyte heterogeneity,” Cytometry29(4), 328–339 (1997). [CrossRef] [PubMed]
  30. C. C. Stewart and S. J. Stewart, “Four color compensation,” Cytometry38(4), 161–175 (1999). [CrossRef] [PubMed]
  31. C. B. Bagwell and E. G. Adams, “Fluorescence Spectral Overlap Compensation for Any Number of Flow Cytometry Parameters,” Ann. N. Y. Acad. Sci.677(1 Clinical Flow), 167–184 (1993). [CrossRef] [PubMed]
  32. M. Bigos, N. Baumgarth, G. C. Jager, O. C. Herman, T. Nozaki, R. T. Stovel, D. R. Parks, and L. A. Herzenberg, “Nine color eleven parameter immunophenotyping using three laser flow cytometry,” Cytometry36(1), 36–45 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited