OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14853–14858

Single-pulse multiphoton polymerization of complex structures using a digital multimirror device

Benjamin Mills, James A Grant-Jacob, Matthias Feinaeugle, and Robert W Eason  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14853-14858 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1498 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a rapid technique for the patterning of complex structures with ~2µm resolution via multiphoton polymerization, through use of a single ultrashort pulse in combination with the spatial intensity modulation possible from a digital multimirror device. Sub-micron features have been achieved through the use of ten consecutive pulses.

© 2013 OSA

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(220.4000) Optical design and fabrication : Microstructure fabrication
(220.4610) Optical design and fabrication : Optical fabrication
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Laser Microfabrication

Original Manuscript: April 19, 2013
Revised Manuscript: May 24, 2013
Manuscript Accepted: June 7, 2013
Published: June 14, 2013

Benjamin Mills, James A Grant-Jacob, Matthias Feinaeugle, and Robert W Eason, "Single-pulse multiphoton polymerization of complex structures using a digital multimirror device," Opt. Express 21, 14853-14858 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Mills, M. Feinaeugle, C. L. Sones, N. Rizvi, and R. W. Eason, “Sub-micron-scale femtosecond laser ablation using a digital micromirror device,” J. Micromech. Microeng.23(3), 035005 (2013). [CrossRef]
  2. J. P. Rice, J. E. Neira, M. Kehoe, and R. Swanson, “DMD diffraction measurements to support design of projectors for test and evaluation of multispectral and hyperspectral imaging sensors,” Proc. SPIE7210, 72100D, 72100D-9 (2009), doi:. [CrossRef]
  3. D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE4985, 14–25 (2003), doi:. [CrossRef]
  4. I. Ortega, A. J. Ryan, P. Deshpande, S. MacNeil, and F. Claeyssens, “Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair,” Acta Biomater.9(3), 5511–5520 (2013). [CrossRef] [PubMed]
  5. R. E. Williams, (2002) US Patent 6413251.
  6. M. Malinauskas, A. Zukauskas, G. Bickauskaite, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18(10), 10209–10221 (2010). [CrossRef] [PubMed]
  7. G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater.20(7), 1038–1052 (2010). [CrossRef]
  8. M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nat. Photonics3(8), 450–452 (2009). [CrossRef]
  9. J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express12(21), 5221–5228 (2004). [CrossRef] [PubMed]
  10. L. Erdmann, A. Deparnay, G. Maschke, M. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Micro Nanolith.4(4), 041601 (2005).
  11. J.-W. Choi, M. D. Irwin, and R. B. Wicker, “DMD-based 3D micro-manufacturing,” Proc. SPIE7596, 75960H, 75960H-11 (2010), doi:. [CrossRef]
  12. R. Nielson, B. Kaehr, and J. B. Shear, “Microreplication and Design of Biological Architectures Using Dynamic-Mask Multiphoton Lithography,” Small5(1), 120–125 (2009). [CrossRef] [PubMed]
  13. K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation,” Opt. Express18(16), 17193–17200 (2010). [CrossRef] [PubMed]
  14. H. Misawa, T. Kondo, S. Juodkazis, V. Mizeikis, and S. Matsuo, “Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express14(17), 7943–7953 (2006). [CrossRef] [PubMed]
  15. M. Tang, Z. C. Chen, Z. Q. Huang, Y. S. Choo, and M. H. Hong, “Maskless multiple-beam laser lithography for large-area nanostructure/microstructure fabrication,” Appl. Opt.50(35), 6536–6542 (2011). [CrossRef] [PubMed]
  16. E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng.22(6), 065022 (2012). [CrossRef]
  17. H. Lin, B. Jia, and M. Gu, “Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication,” Opt. Lett.36(3), 406–408 (2011). [CrossRef] [PubMed]
  18. M. Farsari, S. Huang, P. Birch, F. Claret-Tournier, R. Young, D. Budgett, C. Bradfield, and C. Chatwin, “Microfabrication by use of a spatial light modulator in the ultraviolet: Experimental results,” Opt. Lett.24(8), 549–550 (1999). [CrossRef] [PubMed]
  19. Y.-C. Li, L.-C. Cheng, C.-Y. Chang, C.-H. Lien, P. J. Campagnola, and S.-J. Chen, “Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation,” Opt. Express20(17), 19030–19038 (2012). [CrossRef] [PubMed]
  20. Texas Instruments, (2012) http://www.ti.com/lit/ds/symlink/dlp3000.pdf (last accessed 5/4/2013)
  21. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano2(11), 2257–2262 (2008). [CrossRef] [PubMed]
  22. S. Maruo, T. Hasegawa, and N. Yoshimura, “Single-anchor support and supercritical CO2 drying enable high-precision microfabrication of three-dimensional structures,” Opt. Express17(23), 20945–20951 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited