OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14876–14887

Highly efficient phase-matched second harmonic generation using an asymmetric plasmonic slot waveguide configuration in hybrid polymer-silicon photonics

Jihua Zhang, Eric Cassan, Dingshan Gao, and Xinliang Zhang  »View Author Affiliations


Optics Express, Vol. 21, Issue 12, pp. 14876-14887 (2013)
http://dx.doi.org/10.1364/OE.21.014876


View Full Text Article

Enhanced HTML    Acrobat PDF (2947 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically investigate the possible increase of the second harmonic generation (SHG) efficiency in silicon compatible waveguides by considering an asymmetrical plasmonic slot waveguide geometry and a χ(2) nonlinear polymer infiltrating the slot. The needed phase matching condition is satisfied between the fundamental waveguide mode at the fundamental frequency (FF) and second-order waveguide mode at the second harmonic frequency (SHF) by an appropriate design of the waveguide opto-geometrical parameters. The SHG signal generated in our starting waveguide is three orders of magnitude higher than those previously reported for a FF corresponding to λ = 1550 nm. Then, the SHG performance was further improved by increasing the asymmetry of the structure where nonlinear coupling coefficients as large as 292 psm−1W-1/2 are predicted. The device length is shorter than 20 µm and the normalized SHG conversion efficiency comes up to more than 1 × 105 W−1cm−2.

© 2013 OSA

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(250.5460) Optoelectronics : Polymer waveguides
(250.5403) Optoelectronics : Plasmonics
(250.4390) Optoelectronics : Nonlinear optics, integrated optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 19, 2013
Revised Manuscript: April 12, 2013
Manuscript Accepted: May 22, 2013
Published: June 14, 2013

Citation
Jihua Zhang, Eric Cassan, Dingshan Gao, and Xinliang Zhang, "Highly efficient phase-matched second harmonic generation using an asymmetric plasmonic slot waveguide configuration in hybrid polymer-silicon photonics," Opt. Express 21, 14876-14887 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-12-14876


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Zalevsky and I. Abdulhalim, Integrated Nanophotonic Devices (Elsevier, 2010).
  2. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012). [CrossRef]
  3. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  4. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011). [CrossRef] [PubMed]
  5. J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express19(12), 11415–11421 (2011). [CrossRef] [PubMed]
  6. R. E. P. de Oliveira, M. Lipson, and C. J. S. de Matos, “Electrically controlled silicon nitride ring resonator for quasi-phase matched second-harmonic generation,” in CLEO: Science and Innovations (Optical Society of America, 2012).
  7. T. Y. Ning, H. Pietarinen, O. Hyvärinen, R. Kumar, T. Kaplas, M. Kauranen, and G. Genty, “Efficient second-harmonic generation in silicon nitride resonant waveguide gratings,” Opt. Lett.37(20), 4269–4271 (2012). [CrossRef] [PubMed]
  8. M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer, 2007).
  9. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19(22), 22029–22106 (2011). [CrossRef] [PubMed]
  10. W. S. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science333(6050), 1720–1723 (2011). [CrossRef] [PubMed]
  11. A. R. Davoyan, I. V. Shadrivov, and Y. S. Kivshar, “Quadratic phase matching in nonlinear plasmonic nanoscale waveguides,” Opt. Express17(22), 20063–20068 (2009). [CrossRef] [PubMed]
  12. S. B. Hasan, C. Rockstuhl, T. Pertsch, and F. Lederer, “Second-order nonlinear frequency conversion processes in plasmonic slot waveguides,” J. Opt. Soc. Am. B29(7), 1606–1611 (2012). [CrossRef]
  13. Z. Wu, X. Hu, Z. Yu, W. Hu, F. Xu, and Y. Lu, “Nonlinear plasmonic frequency conversion through quasiphase matching,” Phys. Rev. B82(15), 155107 (2010). [CrossRef]
  14. F. F. Lu, T. Li, X. P. Hu, Q. Q. Cheng, S. N. Zhu, and Y. Y. Zhu, “Efficient second-harmonic generation in nonlinear plasmonic waveguide,” Opt. Lett.36(17), 3371–3373 (2011). [CrossRef] [PubMed]
  15. M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett.92(5), 057402 (2004). [CrossRef] [PubMed]
  16. P. Schön, N. Bonod, E. Devaux, J. Wenger, H. Rigneault, T. W. Ebbesen, and S. Brasselet, “Enhanced second-harmonic generation from individual metallic nanoapertures,” Opt. Lett.35(23), 4063–4065 (2010). [CrossRef] [PubMed]
  17. B. Z. Steinberg, “Parametric plasmonics and second harmonic generation in particle chains,” Opt. Express19(27), 25843–25853 (2011). [CrossRef] [PubMed]
  18. J. Richter, A. Steinbrück, T. Pertsch, A. Tünnermann, and R. Grange, “Plasmonic core–shell nanowires for enhanced second-harmonic generation,” Plasmonics8, 115–120 (2012).
  19. G. T. Reed and A. P. Knights, Silicon Photonics (Wiley Online Library, 2008).
  20. T. W. Baehr-Jones and M. J. Hochberg, “Polymer silicon hybrid systems: a platform for practical nonlinear optics†,” J. Phys. Chem. C112(21), 8085–8090 (2008). [CrossRef]
  21. J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—A platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009). [CrossRef]
  22. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009). [CrossRef]
  23. L. Alloatti, D. Korn, C. Weimann, C. Koos, W. Freude, and J. Leuthold, “Second-order nonlinear silicon-organic hybrid waveguides,” Opt. Express20(18), 20506–20515 (2012). [CrossRef] [PubMed]
  24. G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol.25(9), 2511–2521 (2007). [CrossRef]
  25. Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics1(3), 180–185 (2007). [CrossRef]
  26. M. Jazbinsek, L. Mutter, and P. Gunter, “Photonic applications with the organic nonlinear optical crystal DAST,” IEEE J. Sel. Top. Quantum Electron.14(5), 1298–1311 (2008). [CrossRef]
  27. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  28. Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett.35(4), 502–504 (2010). [CrossRef] [PubMed]
  29. R. Thomas, Z. Ikonic, and R. W. Kelsall, “Silicon based plasmonic coupler,” Opt. Express20(19), 21520–21531 (2012). [CrossRef] [PubMed]
  30. H. Kogenlnik, “2. Theory of dielectric waveguides,” in Integrated Optics (Springer Berlin / Heidelberg, 1975), pp. 13–81.
  31. G. Lifante and J. Wiley, Integrated Photonics: Fundamentals (Wiley Online Library, 2003).
  32. Z. Ruan, G. Veronis, K. L. Vodopyanov, M. M. Fejer, and S. Fan, “Enhancement of optics-to-THz conversion efficiency by metallic slot waveguides,” Opt. Express17(16), 13502–13515 (2009). [CrossRef] [PubMed]
  33. F. F. Lu, T. Li, J. Xu, Z. D. Xie, L. Li, S. N. Zhu, and Y. Y. Zhu, “Surface plasmon polariton enhanced by optical parametric amplification in nonlinear hybrid waveguide,” Opt. Express19(4), 2858–2865 (2011). [CrossRef] [PubMed]
  34. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett.27(3), 179–181 (2002). [CrossRef] [PubMed]
  35. S. V. Rao, K. Moutzouris, and M. Ebrahimzadeh, “Nonlinear frequency conversion in semiconductor optical waveguides using birefringent, modal and quasi-phase-matching techniques,” J. Opt. A, Pure Appl. Opt.6(6), 569–584 (2004). [CrossRef]
  36. M. M. Fejer, G. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992). [CrossRef]
  37. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt.46(33), 8118–8133 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited