OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14926–14942

The searchlight effect in hyperbolic materials

Graeme W. Milton, Ross C. McPhedran, and Ari Sihvola  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14926-14942 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1408 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The quasistatic field around a circular hole in a two-dimensional hyperbolic medium is studied. As the loss parameter goes to zero, it is found that the electric field diverges along four lines each tangent to the hole. In this limit, the power dissipated by the field in the vicinity of these lines, per unit length of the line, goes to zero but extends further and further out so that the net power dissipated remains finite. Additionally the interaction between polarizable dipoles in a hyperbolic medium is studied. It is shown that a dipole with small polarizability can dramatically influence the dipole moment of a distant polarizable dipole, if it is appropriately placed. We call this the searchlight effect, as the enhancement depends on the orientation of the line joining the polarizable dipoles and can be varied by changing the frequency. For some particular polarizabilities the enhancement can actually increase the further the polarizable dipoles are apart.

© 2013 OSA

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: February 27, 2013
Revised Manuscript: May 17, 2013
Manuscript Accepted: May 23, 2013
Published: June 17, 2013

Virtual Issues
Hyperbolic Metamaterials (2013) Optics Express

Graeme W. Milton, Ross C. McPhedran, and Ari Sihvola, "The searchlight effect in hyperbolic materials," Opt. Express 21, 14926-14942 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of εand μ,”Uspekhi Fizicheskikh Nauk92, 517–526 (1967). English translation in Sov. Phys. Uspekhi10:509–514 (1968). [CrossRef]
  2. N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, “Optical and dielectric properties of partially resonant composites,” Phys. Rev. B49, 8479–8482 (1994). [CrossRef]
  3. G. W. Milton, N.-A. P. Nicorovici, R. C. McPhedran, and V. A. Podolskiy, “A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance,” Proc. Roy. Soc. A461, 3999–4034 (2005). [CrossRef]
  4. G. W. Milton and N.-A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” P. R. Soc. A462, 3027–3059 (2006). [CrossRef]
  5. N.-A. P. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express15, 6314–6323 (2007). [CrossRef] [PubMed]
  6. O. P. Bruno and S. Lintner, “Superlens-cloaking of small dielectric bodies in the quasistatic regime,” J. Appl. Phys.102, 124502 (2007). [CrossRef]
  7. G. W. Milton, N.-A. P. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, “Solutions in folded geometries, and associated cloaking due to anomalous resonance,” New J. Phys.10, 115021 (2008). [CrossRef]
  8. N.-A. P. Nicorovici, R. C. McPhedran, S. Enoch, and G. Tayeb, “Finite wavelength cloaking by plasmonic resonance,” New J. Phys.10, 115020 (2008). [CrossRef]
  9. G. Bouchitté and B. Schweizer, “Cloaking of small objects by anomalous localized resonance,” Quantum J. Mech. Appl. Math.63, 437–463 (2010). [CrossRef]
  10. N.-A. P. Nicorovici, R. C. McPhedran, and L. C. Botten, “Relative local density of states and cloaking in finite clusters of coated cylinders,” Wave. Random Complex21, 248–277 (2011). [CrossRef]
  11. H. Ammari, G. Ciraolo, H. Kang, H. Lee, and G. W. Milton, “Spectral theory of a neumann-poincaré-type operator and analysis of cloaking due to anomalous localized resonance,” Arch. Ration. Mech. Anal.208, 667–692 (2013). [CrossRef]
  12. R. V. Kohn, J. Lu, B. Schweizer, and M. I. Weinstein, “A variational perspective on cloaking by anomalous localized resonance,” (2012). ArXiv:1210.4823 [math.AP].
  13. H. Ammari, G. Ciraolo, H. Kang, H. Lee, and G. W. Milton, “Spectral theory of a neumann-poincaré-type operator and analysis of cloaking due to anomalous localized resonance ii,” (2013). ArXiv:1212.5066 [math.AP].
  14. M. Xiao, X. Huang, J. W. Dong, and C. T. Chan, “On the time evolution of the cloaking effect of a metamaterial slab,” Opt. Lett.37, 4594–4596 (2012). [CrossRef] [PubMed]
  15. H. Ammari, G. Ciraolo, H. Kang, H. Lee, and G. W. Milton, “Anomalous localized resonance using a folded geometry in three dimensions,” (2013). ArXiv:1301.5712 [math-ph].
  16. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000). [CrossRef] [PubMed]
  17. R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E64, 056625 (2001). [CrossRef]
  18. F. D. M. Haldane, “Electromagnetic surface modes at interfaces with negative refractive index make a ’not-quite-perfect’ lens,” (2002). ArXiv:cond-mat/0206420 v3 (2002).
  19. N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett.88, 207403 (2002). [CrossRef]
  20. A. L. Pokrovsky and A. L. Efros, “Diffraction in left-handed materials and theory of veselago lens,” (2002). ArXiv:cond-mat/0202078 v2 (2002).
  21. S. A. Cummer, “Simulated causal subwavelength focusing by a negative refractive index slab,” Appl. Phys. Lett.82, 1503–1505 (2003). [CrossRef]
  22. A. L. Pokrovsky and A. L. Efros, “Diffraction theory and focusing of light by a slab of left-handed material,” Physica B338, 333–337 (2003). See also arXiv:cond-mat/0202078 v2 (2002). [CrossRef]
  23. X. S. Rao and C. K. Ong, “Amplification of evanescent waves in a lossy left-handed material slab,” Phys. Rev. B68, 113103 (2003). [CrossRef]
  24. G. Shvets, “Photonic approach to making a material with a negative index of refraction,” Phys. Rev. B67, 035109 (2003). [CrossRef]
  25. R. Merlin, “Analytical solution of the almost-perfect-lens problem,” Appl. Phys. Lett.84, 1290–1292 (2004). [CrossRef]
  26. S. Guenneau, B. Gralak, and J. B. Pendry, “Perfect corner reflector,” Opt. Lett.30, 1204–1206 (2005). [CrossRef] [PubMed]
  27. V. A. Podolskiy and E. E. Narimanov, “Near-sighted superlens,” Opt. Lett.30, 75–77 (2005). [CrossRef] [PubMed]
  28. G. W. Milton, N.-A. P. Nicorovici, and R. C. McPhedran, “Opaque perfect lenses,” Physica B394, 171–175 (2007). [CrossRef]
  29. J. W. Dong, H. H. Zheng, Y. Lai, H. Z. Wang, and C. T. Chan, “Metamaterial slab as a lens, a cloak, or an intermediate,” Phys. Rev. B83, 115124 (2011). [CrossRef]
  30. J. B. Pendry and S. A. Ramakrishna, “Refining the perfect lens,” Physica B338, 329–332 (2003). [CrossRef]
  31. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett.90, 077405 (2003). [CrossRef] [PubMed]
  32. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express14, 8247–8256 (2006). [CrossRef] [PubMed]
  33. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B74, 075103 (2006). [CrossRef]
  34. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686 (2007). [CrossRef] [PubMed]
  35. J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nature1, 143 (2010).
  36. S. S. Kruk, D. A. Powell, A. Minovich, D. N. Neshev, and Y. S. Kivshar, “Spatial dispersion of multilayer fishnet metamaterials,” Opt. Express20, 15101–15105 (2012). [CrossRef]
  37. H. C. Yang and Y. T. Chou, “Antiplane strain problems of an elliptic inclusion in an anisotropic medium,” J. Appl. Mech.44, 437–441 (1977). [CrossRef]
  38. A. H. Sihvola, “On the dielectric problem of isotropic sphere in anisotropic medium,” Electromagnetics17, 69–74 (1997). [CrossRef]
  39. G. W. Milton, The Theory of Composites (Cambridge University Press, 2002). [CrossRef]
  40. A. Sihvola, “Metamaterials and depolarization factors,” Prog. Electromagn. Res.51, 65–82 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited