OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14943–14955

Ultrahigh Casimir interaction torque in nanowire systems

Tiago A. Morgado, Stanislav I. Maslovski, and Mário G. Silveirinha  »View Author Affiliations


Optics Express, Vol. 21, Issue 12, pp. 14943-14955 (2013)
http://dx.doi.org/10.1364/OE.21.014943


View Full Text Article

Enhanced HTML    Acrobat PDF (1338 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the Casimir torque arising from the quantum electromagnetic fluctuations due to the interaction of two interfaces in a system formed by a dense array of metallic nanorods embedded in dielectric fluids. It is demonstrated that as a consequence of the ultrahigh density of photonic states in the nanowire array it is possible to channel the quantum fluctuations, and thereby boost the Casimir torque by several orders of magnitude as compared to other known systems (e.g., birefringent parallel plates).

© 2013 OSA

OCIS Codes
(270.5580) Quantum optics : Quantum electrodynamics
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: February 27, 2013
Revised Manuscript: April 17, 2013
Manuscript Accepted: April 17, 2013
Published: June 17, 2013

Virtual Issues
Hyperbolic Metamaterials (2013) Optics Express

Citation
Tiago A. Morgado, Stanislav I. Maslovski, and Mário G. Silveirinha, "Ultrahigh Casimir interaction torque in nanowire systems," Opt. Express 21, 14943-14955 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-12-14943


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. B. G. Casimir, “On the attraction between two perfectly conducting plates,” Proc. K. Ned. Akad. Wet. 51, 793–795 (1948).
  2. E. M. Lifshitz, “The theory of molecular attractive force between solids,” Sov. Phys. JETP2, 73–83 (1956).
  3. I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, “The general theory of van der Waals forces,” Adv. Phys.10(38), 165–209 (1965). [CrossRef]
  4. F. M. Serry, D. Walliser, and G. J. Maclay, “The role of the casimir effect in the static deflection and stiction of membrane strips in microelectromechanical systems MEMS,” J. Appl. Phys.84(5), 2501–2506 (1998). [CrossRef]
  5. E. Buks and M. L. Roukes, “Stiction, adhesion energy, and the Casimir effect in micromechanical systems,” Phys. Rev. B63(3), 033402 (2001). [CrossRef]
  6. R. Esquivel-Sirvent, L. Reyes, and J. Bárcenas, “Stability and the proximity theorem in Casimir actuated nano devices,” New J. Phys.8(10), 241 (2006). [CrossRef]
  7. F. Capasso, J. N. Munday, D. Iannuzzi, and H. B. Chan, “Casimir forces and quantum electrodynamical torques: physics and nanomechanics,” IEEE J. Sel. Top. Quantum Electron.13(2), 400–414 (2007). [CrossRef]
  8. H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Quantum mechanical actuation of microelectromechanical systems by the Casimir force,” Science291(5510), 1941–1944 (2001). [CrossRef] [PubMed]
  9. H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Nonlinear micromechanical Casimir oscillator,” Phys. Rev. Lett.87(21), 211801 (2001). [CrossRef] [PubMed]
  10. A. Ashourvan, M. Miri, and R. Golestanian, “Noncontact Rack and Pinion Powered by the Lateral Casimir Force,” Phys. Rev. Lett.98(14), 140801 (2007). [CrossRef] [PubMed]
  11. T. Emig, “Casimir-Force-Driven Ratchets,” Phys. Rev. Lett.98(16), 160801 (2007). [CrossRef] [PubMed]
  12. V. A. Parsegian and G. H. Weiss, “Dielectric anisotropy and the van der Waals interaction between bulk media,” J. Adhes.3(4), 259–267 (1972). [CrossRef]
  13. Y. S. Barash, “Moment of van der Waals forces between anisotropic bodies,” Izv. Vyss. Ucebn. Zaved. Radiofiz.12, 1637–1643 (1978) (Radiophys. Quantum Electron. 21, 1138–1143 (1978)).
  14. J. N. Munday, D. Iannuzzi, Y. Barash, and F. Capasso, “Torque on birefringent plates induced by quantum fluctuations,” Phys. Rev. A71(4), 042102 (2005). [CrossRef]
  15. T. G. Philbin and U. Leonhardt, “Alternative calculation of the Casimir forces between birefringent plates,” Phys. Rev. A78(4), 042107 (2008). [CrossRef]
  16. J. N. Munday, D. Iannuzzi, and F. Capasso, “Quantum electrodynamical torques in the presence of Brownian motion,” New J. Phys.8(10), 244 (2006). [CrossRef]
  17. R. B. Rodrigues, P. A. M. Neto, A. Lambrecht, and S. Reynaud, “Casimir torque between corrugated metallic plates,” J. Phys. A.41(16), 164019 (2008). [CrossRef]
  18. U. Leonhardt and T. G. Philbin, “Quantum levitation by left-handed metamaterials,” New J. Phys.9(8), 254 (2007). [CrossRef]
  19. F. S. Rosa, D. A. Dalvit, and P. W. Milonni, “Casimir-Lifshitz Theory and Metamaterials,” Phys. Rev. Lett.100(18), 183602 (2008). [CrossRef] [PubMed]
  20. R. Zhao, J. Zhou, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir Force in Chiral Metamaterials,” Phys. Rev. Lett.103(10), 103602 (2009). [CrossRef] [PubMed]
  21. V. Yannopapas and N. V. Vitanov, “First-Principles Study of Casimir Repulsion in Metamaterials,” Phys. Rev. Lett.103(12), 120401 (2009). [CrossRef] [PubMed]
  22. M. G. Silveirinha, “Casimir interaction between metal-dielectric metamaterial slabs: Attraction at all macroscopic distances,” Phys. Rev. B82(8), 085101 (2010). [CrossRef]
  23. M. G. Silveirinha and S. I. Maslovski, “Physical restrictions on the Casimir interaction of metal-dielectric metamaterials: An effective-medium approach,” Phys. Rev. A82(5), 052508 (2010). [CrossRef]
  24. S. I. Maslovski and M. G. Silveirinha, “Ultralong-range Casimir-Lifshitz forces mediated by nanowire materials,” Phys. Rev. A82(2), 022511 (2010). [CrossRef]
  25. S. I. Maslovski and M. G. Silveirinha, “Mimicking Boyer’s Casimir repulsion with a nanowire material,” Phys. Rev. A83(2), 022508 (2011). [CrossRef]
  26. M. G. Silveirinha, “Nonlocal homogenization model for a periodic array of ε-negative rods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(4), 046612 (2006). [CrossRef] [PubMed]
  27. P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B67(11), 113103 (2003). [CrossRef]
  28. M. G. Silveirinha, C. A. Fernandes, and J. R. Costa, “Additional boundary condition for a wire medium connected to a metallic surface,” New J. Phys.10(5), 053011 (2008). [CrossRef]
  29. T. A. Morgado and M. G. Silveirinha, “Transport of an arbitrary near-field component with an array of tilted wires,” New J. Phys.11(8), 083023 (2009). [CrossRef]
  30. N. G. Van Kampen, B. Nijboer, and K. Schram, “On the macroscopic theory of Van der Waals forces,” Phys. Lett. A26(7), 307–308 (1968). [CrossRef]
  31. A. Lambrecht and V. N. Marachevsky, “New geometries in the Casimir effect: Dielectric gratings,” J. Phys. Conf. Ser.161(1), 012014 (2009). [CrossRef]
  32. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt.24(24), 4493–4499 (1985). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited