OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14962–14974

Hyperbolic and plasmonic properties of Silicon/Ag aligned nanowire arrays

S.M. Prokes, Orest J. Glembocki, J. E. Livenere, T. U. Tumkur, J. K. Kitur, G. Zhu, B. Wells, V. A. Podolskiy, and M. A. Noginov  »View Author Affiliations


Optics Express, Vol. 21, Issue 12, pp. 14962-14974 (2013)
http://dx.doi.org/10.1364/OE.21.014962


View Full Text Article

Enhanced HTML    Acrobat PDF (1846 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The hyperbolic and plasmonic properties of silicon nanowire/Ag arrays have been investigated. The aligned nanowire arrays were formed and coated by atomic layer deposition of Ag, which itself is a metamaterial due to its unique mosaic film structure. The theoretical and numerical studies suggest that the fabricated arrays have hyperbolic dispersion in the visible and IR ranges of the spectrum. The theoretical predictions have been indirectly confirmed by polarized reflection spectra, showing reduction of the reflection in p polarization in comparison to that in s polarization. Studies of dye emission on top of Si/Ag nanowire arrays show strong emission quenching and shortening of dye emission kinetics. This behavior is also consistent with the predictions for hyperbolic media. The measured SERS signals were enhanced by almost an order of magnitude for closely packed and aligned nanowires, compared to random nanowire composites. These results agree with electric field simulations of these array structures.

© 2013 OSA

OCIS Codes
(160.4670) Materials : Optical materials
(160.1245) Materials : Artificially engineered materials
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials

ToC Category:
Metamaterials

History
Original Manuscript: March 15, 2013
Revised Manuscript: May 15, 2013
Manuscript Accepted: May 16, 2013
Published: June 17, 2013

Virtual Issues
Hyperbolic Metamaterials (2013) Optics Express

Citation
S.M. Prokes, Orest J. Glembocki, J. E. Livenere, T. U. Tumkur, J. K. Kitur, G. Zhu, B. Wells, V. A. Podolskiy, and M. A. Noginov, "Hyperbolic and plasmonic properties of Silicon/Ag aligned nanowire arrays," Opt. Express 21, 14962-14974 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-12-14962


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Engheta and R. W. Ziolkowski, Electromagnetic Metamaterials: Physics and Engineering Explorations (John Wiley & Sons, 2006).
  2. M. A. Noginov and V. A. Podolskiy, eds., Tutorials in Metamaterials, Series in Nano-optics and Nanophotonics (CRC Press, 2011), p. 293.
  3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000). [CrossRef] [PubMed]
  4. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001). [CrossRef] [PubMed]
  5. A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett.90(13), 137401 (2003). [CrossRef] [PubMed]
  6. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett.90(10), 107401 (2003). [CrossRef] [PubMed]
  7. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett.30(24), 3356–3358 (2005). [CrossRef] [PubMed]
  8. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  9. A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett.92(11), 117403 (2004). [CrossRef] [PubMed]
  10. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express14(18), 8247–8256 (2006). [CrossRef] [PubMed]
  11. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B74(7), 075103 (2006). [CrossRef]
  12. A. V. Kildishev and E. E. Narimanov, “Impedance-matched hyperlens,” Opt. Lett.32(23), 3432–3434 (2007). [CrossRef] [PubMed]
  13. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315(5819), 1699–1701 (2007). [CrossRef] [PubMed]
  14. Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007). [CrossRef] [PubMed]
  15. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  16. W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics1(4), 224–227 (2007). [CrossRef]
  17. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90(2), 027402 (2003). [CrossRef] [PubMed]
  18. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkeman, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. N. Tzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007). [CrossRef]
  19. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  20. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  21. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature482(7384), 204–207 (2012). [CrossRef] [PubMed]
  22. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett.90(7), 077405 (2003). [CrossRef] [PubMed]
  23. P. A. Belov, R. Marqués, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B67(11), 113103 (2003). [CrossRef]
  24. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express14(18), 8247–8256 (2006). [CrossRef] [PubMed]
  25. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B74(7), 075103 (2006) (5 pages). [CrossRef]
  26. Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett.100(18), 181105 (2012). [CrossRef]
  27. M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett.35(11), 1863–1865 (2010). [CrossRef] [PubMed]
  28. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Metamaterial based broadband engineering of quantum dot spontaneous emission,” arXiv:0912.2454.
  29. Z. Jacob, J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010). [CrossRef]
  30. T. Tumkur, G. Zhu, P. Black, Yu. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett.99(15), 151115 (2011). [CrossRef]
  31. J. Kim, V. P. Drachev, Z. Jacob, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Improving the radiative decay rate for dye molecules with hyperbolic metamaterials,” Opt. Express20(7), 8100–8116 (2012). [CrossRef] [PubMed]
  32. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336(6078), 205–209 (2012). [CrossRef] [PubMed]
  33. A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A84(2), 023807 (2011). [CrossRef]
  34. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  35. T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, and M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett.101(9), 091105 (2012). [CrossRef]
  36. E. E. Narimanov, H. Li, Yu. A. Barnakov, T. U. Tumkur, and M. A. Noginov, “Reduced reflection from roughened hyperbolic metamaterial,” submitted to Optics Express.
  37. A. Boltasseva, “Fabrication of optical metamaterials,” in Tutorials in Metamaterials, (Series in Nano-optics and Nanophotonics) A. M. A. Noginov and V. A. Podolskiy, Eds. (CRC Press, 2011).
  38. P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C111(34), 12522–12527 (2007). [CrossRef]
  39. W. Dickson, G. A. Wurtz, P. Evans, D. O’Connor, R. Atkinson, R. Pollard, and A. V. Zayats, “Dielectric-loaded plasmonic nanoantenna arrays: A metamaterial with tuneable optical properties,” Phys. Review B76115411 (2007)
  40. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009). [CrossRef] [PubMed]
  41. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science321(5891), 930 (2008). [CrossRef] [PubMed]
  42. M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett.94(15), 151105 (2009). [CrossRef]
  43. D. A. Pawlak, “Eutectic fibers with self-organized structures,” Adv. Mater. Res.8, 129–139 (2007). [CrossRef]
  44. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater.6(12), 946–950 (2007). [CrossRef] [PubMed]
  45. S. M. Prokes, O. J. Glembocki, E. Cleveland, J. D. Caldwell, E. Foos, J. Niinistö, and M. Ritala, “Spoof-like plasmonic behavior of plasma enhanced atomic layer deposition grown Ag thin films,” Appl. Phys. Lett.100(5), 053106 (2012). [CrossRef]
  46. Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell, and C. M. Lieber, “Controlled growth and structures of molecular-scale silicon nanowires,” Nano Lett.4(3), 433–436 (2004). [CrossRef]
  47. H. Pan, S. Lim, C. Poh, H. Sun, X. Wu, Y. Feng, and J. Lin, “Growth of Si nanowires by thermal evaporation,” Nanotechnology16(4), 417–421 (2005). [CrossRef]
  48. J. Westwater, D. Gosain, S. Tomiya, and S. Usui, “Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction,” J. Vac. Sci. Technol. B15(3), 554 (1997). [CrossRef]
  49. K. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry,” Adv. Mater.14(16), 1164 (2002). [CrossRef]
  50. M. L. Zhang, K. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee, and N. B. Wong, “Preparation of large/area uniform silicon nanowires arrays through metal-assisted chemical etching,” J. Phys. Chem. C112(12), 4444–4450 (2008). [CrossRef]
  51. M. Kariniemi, J. Niinisto, T. Hatanpaa, M. Kemell, T. Sajavaara, M. Ritala, and M. Leskela, “Plasma-enhanced atomic layer deposition of silver thin films,” Chem. Mater.23(11), 2901–2907 (2011). [CrossRef]
  52. O. J. Glembocki, S. M. Prokes, E. Cleveland, R. W. Rendell, and E. Foos, “Metamaterial properties of silver films deposited by ALD,” Proceeding of ALD 2012, 129 (2012).
  53. www.comsol.com
  54. Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1998)
  55. R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett.102(12), 127405 (2009). [CrossRef] [PubMed]
  56. N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Assenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett.82(18), 3095 (2003). [CrossRef]
  57. S. M. Prokes, O. J. Glembocki, R. W. Rendell, and M. G. Ancona, “Enhanced plasmon coupling in crossed dielectric/metal nanowire composite geometries and applications to surface-enhanced Raman spectroscopy,” Appl. Phys. Lett.90(9), 093105 (2007). [CrossRef]
  58. S. M. Prokes, D. A. Alexson, O. J. Glembocki, H. D. Park, and R. W. Rendell, “Effect of crossing geometry on the plasmonic behavior of dielectric core/metal sheath nanowires,” Appl. Phys. Lett.94(9), 093105 (2009). [CrossRef]
  59. R. Aroca and A. Thedchanamoorthy, “Vibrational studies of molecular organization in evaporated phthalocyanine thin solid films,” Chem. Mater.7(1), 69–74 (1995). [CrossRef]
  60. M. Lütt, M. R. Fitzsimmons, and D. Li, “X-ray reflectivity study of self-assembled thin films of macrocycles and macromolecules,” J. Phys. Chem. B102(2), 400–405 (1998). [CrossRef]
  61. J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express8(12), 655–663 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited