OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14982–14987

Physical nature of volume plasmon polaritons in hyperbolic metamaterials

Sergei V. Zhukovsky, Omar Kidwai, and J. E. Sipe  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14982-14987 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1893 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate electromagnetic wave propagation in multilayered metal-dielectric hyperbolic metamaterials (HMMs). We demonstrate that high-k propagating waves in HMMs are volume plasmon polaritons. The volume plasmon polariton band is formed by coupling of short-range surface plasmon polariton excitations in the individual metal layers.

© 2013 OSA

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: March 12, 2013
Revised Manuscript: April 22, 2013
Manuscript Accepted: April 22, 2013
Published: June 17, 2013

Virtual Issues
Hyperbolic Metamaterials (2013) Optics Express

Sergei V. Zhukovsky, Omar Kidwai, and J. E. Sipe, "Physical nature of volume plasmon polaritons in hyperbolic metamaterials," Opt. Express 21, 14982-14987 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett.94(15), 151105 (2009). [CrossRef]
  2. M. A. Noginov, H. Li, Yu. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett.35(11), 1863–1865 (2010). [CrossRef] [PubMed]
  3. A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Genanakis, N. Katsarakis, M. Kafesaki, Ch. Mavidis, J. García de Abajo, E. N. Economou, and C. M. Soukoulis, “Self-organization approach for THz polaritonic metamaterials,” Opt. Express20(13), 14663–14682 (2012). [CrossRef] [PubMed]
  4. S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B84(3), 035128 (2011). [CrossRef]
  5. Z. Jacob, J.-Y. Kim, G.V. Naik, A. Boltasseva, E.E. Narimanov, and V.M. Shalaev, “Engineering the photonic density of states with metamaterials,” Appl. Phys. B100(1), 215–218 (2010). [CrossRef]
  6. Z. Jacob, I. I. Smolyaninov, and E.E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett.100(18), 181105 (2012). [CrossRef]
  7. D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett.84(13), 2244–2246 (2004). [CrossRef]
  8. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express14(18), 8247–8256 (2006). [CrossRef] [PubMed]
  9. A. N. Poddubny, P. A. Belov, and Yu. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A84(2), 023807 (2011). [CrossRef]
  10. C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14(6), 063001 (2012). [CrossRef]
  11. E. E. Narimanov and I. I. Smolyaninov, “Beyond Stefan-Boltzmann law: thermal hyper-conductivity,” arXiv:1109.5444 (2011).
  12. I. I. Smolyaninov and E. E. Narimanov, “Metric signature transitions in optical metamaterials,” Phys. Rev. Lett.105(6), 067402 (2010). [CrossRef] [PubMed]
  13. A. A. Basharin, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Backward wave radiation from negative permittivity waveguides and its use for THz subwavelength imaging,” Opt. Express20(12), 12752–12760 (2012). [CrossRef] [PubMed]
  14. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74(11), 115116 (2006). [CrossRef]
  15. A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B79, 245127 (2009). [CrossRef]
  16. S. Ramakrishna, J. Pendry, M. Wiltshire, and W. Stewart, “Imaging the near field,” J. Mod. Opt.50, 1419 (2003).
  17. E. Narimanov, M. A. Noginov, H. Li, and Y. Barnakov, “Darker than Black: Radiation-absorbing Metamaterial,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper QPDA6.
  18. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys.125(16), 164705 (2006). [CrossRef] [PubMed]
  19. T. S. Eriksson, A. Hjortsberg, G. A. Niklasson, and C. G. Granqvist, “Infrared optical properties of evaporated alumina films,” Appl. Opt.20(15), 2742–2746 (1981). [CrossRef] [PubMed]
  20. A. Chebykin, A. Orlov, A. Vozianova, S. Maslovski, Yu. Kivshar, and P. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B84(11), 115438 (2011). [CrossRef]
  21. A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Yu. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B84(4), 045424 (2011). [CrossRef]
  22. O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Dipole radiation near hyperbolic metamaterials: applicability of effective-medium approximation,” Opt. Lett.36(13), 2530–2532 (2011). [CrossRef] [PubMed]
  23. I. Iorsh, A. Poddubny, A. Orlov, P. Belov, and Yu. Kivshar, “Spontaneous emission enhancement in metal-dielectric metamaterials,” Phys. Lett. A376(3), 185–187 (2012). [CrossRef]
  24. O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic meta-materials: Strengths and limitations,” Phys. Rev. A85(5), 053842 (2012). [CrossRef]
  25. X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, and A. V. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express19(25), 25242–25254 (2011). [CrossRef]
  26. J. Schilling, “Uniaxial metallo-dielectric metamaterials with scalar positive permeability,” Phys. Rev. E74(4), 046618 (2006). [CrossRef]
  27. I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B75(24), 241402(R) (2007). [CrossRef]
  28. S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photon. Rev.7(2), 265–271 (2013). [CrossRef]
  29. E. Colak, H. Caglayan, A. O. Cakmak, A. D. Villa, F. Capolino, and E. Ozbay, “Frequency dependent steering with backward leaky waves via photonic crystal interface layer,” Opt. Express17(12), 9879–9890 (2009). [CrossRef] [PubMed]
  30. H. Liu and K. J. Webb, “Leaky wave radiation from planar anisotropic metamaterial slabs,” Phys. Rev. B81(20), 201404 (2010). [CrossRef]
  31. R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys.: Condens. Matter13(9), 1811 (2001). [CrossRef]
  32. S. Feng, J. M. Elson, and P. L. Overfelt, “Optical properties of multilayer metal-dielectric nanofilms with all-evanescent modes,” Opt. Express13(11), 4113–4124 (2005). [CrossRef] [PubMed]
  33. G. Rosenblatt and M. Orenstein, “Competing coupled gaps and slabs for plasmonic metamaterial analysis,” Opt. Express19(21), 20372–20385 (2011). [CrossRef] [PubMed]
  34. A. Yariv and P. Yeh, Optical Waves in Crystals (New York: Wiley, 1983).
  35. T. Truong, J. Maria, J. Yao, M. Stewart, T. Lee, S. Gray, R. Nuzzo, and J. Rogers, “Nanopost plasmonic crystals,” Nanotechnol.20(43), 434011 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited