OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14988–15013

Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications

Constantin Simovski, Stanislav Maslovski, Igor Nefedov, and Sergei Tretyakov  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14988-15013 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1213 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using our recently developed method we analyze the radiative heat transfer in micron-thick multilayer stacks of metamaterials with hyperbolic dispersion. The metamaterials are especially designed for prospective thermophotovoltaic systems. We show that the huge transfer of near-infrared thermal radiation across micron layers of metamaterials is achievable and can be optimized. We suggest an approach to the optimal design of such metamaterials taking into account high temperatures of the emitting medium and the heating of the photovoltaic medium by the low-frequency part of the radiation spectrum. We show that both huge values and frequency selectivity are achievable for the radiative heat transfer in hyperbolic multilayer stacks.

© 2013 OSA

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(230.5298) Optical devices : Photonic crystals

ToC Category:

Original Manuscript: March 18, 2013
Revised Manuscript: May 7, 2013
Manuscript Accepted: May 7, 2013
Published: June 17, 2013

Virtual Issues
Hyperbolic Metamaterials (2013) Optics Express

Constantin Simovski, Stanislav Maslovski, Igor Nefedov, and Sergei Tretyakov, "Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications," Opt. Express 21, 14988-15013 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. I. Flik, B. I. Choi, and K. E. Goodson, “Heat-transfer regimes in microstructures,” J. Heat Transfer114, 666–674 (1992). [CrossRef]
  2. M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermo-photovoltaic energy conversion devices,” IEEE Trans. Energy Conversion17, 130–137 (2002). [CrossRef]
  3. B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. DePoy, and T. Rahmlow, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev.51, 512–515 (2004). [CrossRef]
  4. R. DiMatteo, P. Greiff, D. Seltzer, D. Meulenberg, E. Brown, E. Carlen, K. Kaiser, S. Finberg, H. Nguyen, J. Azarkevich, P. Baldasaro, J. Beausang, L. Danielson, M. Dashiell, D. DePoy, H. Ehsani, W. Topper, and K. Rahner, “Micron-gap ThermoPhotoVoltaics (MTPV),” in: Proceedings of 6-th AIP Int. Conf. Thermo-Photo-Voltaic Generation of Electricity, A. Gopinath, T.J. Coutts, and J. Luther, Editors, Sept.9–10, 2005, NY, USA, pp. 42–52.
  5. S. Basu, Y.-B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices: A review,” Int. J. Energy Res.31, 689–716 (2007). [CrossRef]
  6. T. Bauer, I. Forbes, R. Penlington, and N. Pearsall, “Heat transfer modeling in the thermophotovoltaic cavities using glass media,” Solar Energy Materials and Solar Cells88, 257–268 (2005). [CrossRef]
  7. S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res.33, 1203–1210 (2009). [CrossRef]
  8. C. Fu and Z. M. Zhang, “Thermal radiative properties of metamaterials and other nanostructured materials: A review,” Frontiers of Energy and Power Engineering in China3, 11–26 (2007). [CrossRef]
  9. F. Demichelis, E. Minettimezzetti, M. Agnello, and E. Tresso, “Evaluation of thermophotovoltaic conversion efficiency,” J. Appl. Phys.53, 9098–9104 (1982). [CrossRef]
  10. R. S. DiMatteo, M. S. Weinberg, and G. A. Kirkos, “Microcavity apparatus and systems for maintaining micro-cavity over a microscale area,” US Patent 2001/6232546B1.
  11. D. M. Matson and R. Venkatesh, “Precision parts by electrophoretic deposition,” US Patent 2006/0289310A1.
  12. M. G. Mauk, Survey of Thermophotovoltaic (TPV) Devices (Springer, 2007).
  13. I. Celanovic, F. OSullivan, M. Ilak, J. Kassakian, and D. Perreault, “Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications,” Opt. Lett.29, 863–866 (2004). [CrossRef] [PubMed]
  14. F. OSullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of 1D Si/SiO2photonic crystals for thermophotovoltaic applications,” J. Appl. Phys.97, 033529 (2005). [CrossRef]
  15. W. T. Lau, J.-T. Shen, G. Veronis, and S. Fan, “Ultra-Small coherent thermal conductance using multi-layer photonic crystal,” Proc. SPIE7223, 722317 (2009). [CrossRef]
  16. M. Kreiter, J. Oster, and R. Sambles, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Comm.168, 117–122 (1999). [CrossRef]
  17. A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt.47, 2399–2419 (2000).
  18. Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiatiors,” Opt. Comm.269, 411–417 (2007). [CrossRef]
  19. P. Bermel, M. Ghebrebrhan, W. Chan, Y.-X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljacic, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Expr.18, A314–A334 (2010). [CrossRef]
  20. C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt.14, 024005 (2012). [CrossRef]
  21. Zh. Zhang, Nano/microscale Heat Transfer (McGraw-Hill, 2007, pp. 311).
  22. R. Siegel and J. Howell, Thermal Radiation Heat Transfer, 4-th ed. (Taylor and Francis, 2002) p. 525.
  23. C. M. Hargreaves, “Anomalous radiative transfer between closely-spaced bodies,” Phys. Lett. A30, 491–492 (1969). [CrossRef]
  24. J. B. Pendry, “Radiative exchange of heat between nanostructurs,” J. Phys.: Cond. Mat.11, 6621–6629 (1999). [CrossRef]
  25. J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Nanoscale radiative heat transfer between a small particle and a plane surface,” Appl. Phys. Lett.78, 2931 (2001). [CrossRef]
  26. K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surface Science Reports57, 59–112 (2005). [CrossRef]
  27. A.I. Volokitin and B.N.J. Persson, “Resonant photon tunneling enhancement of the radiative heat transfer,” Phys. Rev. B63, 045417 (2004). [CrossRef]
  28. R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature418, 159–162 (2002). [CrossRef] [PubMed]
  29. M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermo-photovoltaic energy conversion,” J. Appl. Phys.100, 063704 (2006). [CrossRef]
  30. K. Park, S. Basu, P. King, and Z.M. Zhang, “Performance analysis of near-field thermo-photovoltaic devices considering absorption distributions,” J. Quantitative Spectros. Radiative Transf.109, 305–310 (2008). [CrossRef]
  31. S. M. Rytov, Theory of Electric Fluctuations and Thermal Radiation (Electronics Research Directorate, Air Force Cambridge Research Center, Air Research and Development Command, U.S. Air Force, 1959).
  32. D. Polder and M. van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B4, 3303–3314 (1971). [CrossRef]
  33. K. Joulain, “Near-field heat transfer: A radiative interpretation of thermal conduction,” J. Quantitative Spectroscopy and Radiative Transfer109, 294–304 (2008). [CrossRef]
  34. S. Basu and Z. M. Zhang, “Maximum energy transfer in near-field thermal radiation at nanometer distances,” J. Appl. Phys.105, 093535 (2009). [CrossRef]
  35. S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res.33, 1203–1232 (2009). [CrossRef]
  36. K. Park, A. Marchenkov, Z. M. Zhang, and W. P. King, “Low-temperature characterization of a heated cantilever,” J. Appl. Phys.101, 094504 (2007). [CrossRef]
  37. A. Kittel, W. Mller-Hirsch, J. Parisi, S.-A. Biehs, D. Reddig, and M. Holthaus, “Near-field heat transfer in a scanning thermal microscope,” Phys. Rev. Lett.95, 224301 (2005). [CrossRef] [PubMed]
  38. A. Kittel, U. F. Wischnath, J. Welker, O. Huth, F. Rüting, and S.-A. Biehs, “Near-field thermal imaging of nanostructured surfaces,” Appl. Phys. Lett.93, 193109 (2008). [CrossRef]
  39. Z. M. Zhang and C. J. Fu, “Unusual photon tunneling in the presence of a layer with a negative refractive index,” Appl. Phys. Lett.80(6), 1097–1099 (2002) [CrossRef]
  40. C. J. Fu and Z. M. Zhang, “Transmission enhancement using a negative-refraction layer,” Microscale Thermophys. Eng.7, 221–234 (2003). [CrossRef]
  41. K.-Y. Kim, “Photon tunneling in composite layers of negative- and positive-index media,” Phys. Rev. E70, 047603 (2004). [CrossRef]
  42. J.B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett.85, 3966–3969 (2000). [CrossRef] [PubMed]
  43. Metamaterials Handbook, vols. 1 and 2, F. Capolino, Ed. (CRC Press, Boca Raton, FL, USA, 2009).
  44. S. I. Maslovski, C. R. Simovski, and S. A. Tretyakov, “Equivalent circuit model of radiative heat transfer,” Phys. Rev. B87, 155124 (2013). [CrossRef]
  45. I. Nefedov and C. Simovski, “Giant radiation heat transfer through the micron gaps,” Phys. Rev. B84, 195459 (2011). [CrossRef]
  46. Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express16, 15439–15448 (2008). [CrossRef] [PubMed]
  47. J. Elser, R. Wangberg, E. Narimanov, and V. A. Podolskiy, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett.89, 261102 (2006). [CrossRef]
  48. M. Silveirinha, “Nonlocal homogenization model for a periodic array of epsilon-negative rods,” Phys. Rev. E73, 046612 (2006). [CrossRef]
  49. S. Maslovski and M. Silveirinha, “Nonlocal permittivity from a quasistatic model for a class of wire media,” Phys. Rev. B80, 245101 (2009) [CrossRef]
  50. S. I. Maslovski and M. G. Silveirinha, “Mimicking Boyers-Casimir repulsion with a nanowire material,” Phys. Rev. A83, 022508 (2011). [CrossRef]
  51. C. R. Simovski, P. A. Belov, A. V. Atraschenko, and Yu. S. Kivshar, “Wire Metamaterials: Physics and Applications,” Adv. Mat.24, 4229–4248 (2012). [CrossRef]
  52. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nature Mat.8, 867–871 (2009). [CrossRef]
  53. S. A. Tretyakov, Analytical Modelling in Applied Electromagnetics (Artech House, 2003).
  54. D. R. Schmidt, R. J. Schoelkopf, and A. N. Cleland, “Photon-mediated thermal relaxation of electrons in nanostructures,” Phys. Rev. Lett.93, 045901 (2004). [CrossRef] [PubMed]
  55. M. Meschke, W. Guichard, and J.P. Pekola, “Single-mode heat conduction by photons,” Nature444, 187–190, 2006. [CrossRef] [PubMed]
  56. A. Haddad-Adel, T. Inokuma, Y. Kurata, and S. Hasegawa, “Optical and structural properties of polycrystalline 3C-SiC films,” Appl. Phys. Lett.89, 181904 (2006) [CrossRef]
  57. P. T. B. Shaffer, “Refractive Index, Dispersion, and Birefringence of Silicon Carbide Polytypes,” Appl. Opt.10, 1034 (1971). [CrossRef] [PubMed]
  58. S. Levcenko, G. Gurieva, E. J. Friedrich, J. Trigo, J. Ramiro, J. M. Merino, E. Arushanov, and M. Leon, “Optical constants of CuIn1−xAlxSe2 thin films deposited by flash evaporation,” Moldavian Journal of the Physical Sciences, 9148–155 (2010).
  59. R. Caballero and C. Guillen, “Optical and electrical properties of CuIn1−xAlxSe2 thin films obtained by selenization of sequentially evaporated metallic layers,” Thin Solid Films, 431/432200–204 (2003). [CrossRef]
  60. S. Mattei, P. Masclet, and P. Herve, “Study of complex refractive indices of gold and copper using emissivity measurements,” Infrared Physics29, 991–999 (1989). [CrossRef]
  61. S. Mattei, P. Masclet, and P. Herve, “Study of complex refractive indices of gold and alloys at high temperature,” High Temperature16, 140–146 (1978).
  62. G.P. Pells and L.I. Shiga, “The optical properties of copper and gold as a function of temperature,” J. Phys.: Solid State Phys.2, 1835–1846 (1969). [CrossRef]
  63. E. N. Shestakov, L. N. Latyev, and V. Ia. Chekhovskoi, “Investigation of the optical properties of metals at high temperatures,” Teplofizika Vysokikh Temperatur15, 292–299 (1977), in Russian.
  64. E. Hasman, V. Kleiner, N. Dahan, Yu. Gorodetski, K. Frischwasser, and I. Balin, “Manipulation of thermal emission by use of micro and nanoscale structures,” J. Heat Transfer134, 031023 (2012). [CrossRef]
  65. X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B103, 553–558 (2011). [CrossRef]
  66. M. A. Noginov, Yu. A. Barnakov, T. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett.94, 151105 (2009). [CrossRef]
  67. A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys.92, 2424–2436 (2002). [CrossRef]
  68. M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Ultimate limit of resolution of subwavelength imaging devices formed by metallic rods,” Opt. Lett.33, 1726–1729 (2008). [CrossRef] [PubMed]
  69. N.P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Expr.17, 22800–22812 (2009). [CrossRef]
  70. X. Xiao, C. A. Wong, and A. K. Sachdev, “Growing metal nanowires,” US patent 2011/684253A1.
  71. Y.-Y. Chen, Z.-M. Huang, and Q. Wang, “Photon tunneling in one-dimensional metamaterial photonic crystals,” J. Opt. A: Pure Appl. Opt.7(9), 519–524 (2005). [CrossRef]
  72. S. Anantha Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt.50, 1419 (2003).
  73. S. Feng and J. Elson, “Optical properties of multilayer metal-dielectric nanofilms with all-evanescent modes,” Opt. Express14, 2216–2241 (2006).
  74. D. Schurig and D. R. Smith, “Sub-diffraction imaging with compensating bilayers,” New J. Phys.7, 162 (2005). [CrossRef]
  75. P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B73, 113110 (2006). [CrossRef]
  76. M. Tschikin, P. Ben-Abdallah, and S.-A. Biehs, “Coherent thermal conductance of 1-D photonic crystals,” Phys. Lett. A376, 3462 (2012). [CrossRef]
  77. H. Jiang, H. Chen, H. Li, Y. Zhang, J. Zi, and S. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E69, 066607 (2004). [CrossRef]
  78. A. P. Vinogradov, A. V. Dorofeenko, and I. A. Nechepurenko, “Analysis of plasmonic Bloch waves and band structures of 1D plasmonic photonic crystals,” Metamaterials4, 181–200 (2010). [CrossRef]
  79. A. P. Vinogradov and A. V. Dorofeenko, “Near-field Bloch waves in photonic crystals,” Journal of Communication Technology and Electronics50, 1153–1158 (2005).
  80. S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett.109, 104301 (2012) [CrossRef] [PubMed]
  81. Yu Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett.101, 131106 (2012). [CrossRef]
  82. S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett.102, 131106 (2013). [CrossRef]
  83. B. Liu and S. Shen, “Broadband near-field radiative thermal emitter/absorber based on hyperbolic metamaterials: Direct numerical simulation by the Wiener chaos expansion method,” Phys. Rev. B87, 115403 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited