OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 15014–15019

Thermal hyperbolic metamaterials

Yu Guo and Zubin Jacob  »View Author Affiliations


Optics Express, Vol. 21, Issue 12, pp. 15014-15019 (2013)
http://dx.doi.org/10.1364/OE.21.015014


View Full Text Article

Acrobat PDF (1356 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We explore the near-field radiative thermal energy transfer properties of hyperbolic metamaterials. The presence of unique electromagnetic states in a broad bandwidth leads to super-planckian thermal energy transfer between metamaterials separated by a nano-gap. We consider practical phonon-polaritonic metamaterials for thermal engineering in the mid-infrared range and show that the effect exists in spite of the losses, absorption and finite unit cell size. For thermophotovoltaic energy conversion applications requiring energy transfer in the near-infrared range we introduce high temperature hyperbolic metamaterials based on plasmonic materials with a high melting point. Our work paves the way for practical high temperature radiative thermal energy transfer applications of hyperbolic metamaterials.

© 2013 OSA

OCIS Codes
(260.2160) Physical optics : Energy transfer
(350.6050) Other areas of optics : Solar energy
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: March 12, 2013
Revised Manuscript: May 5, 2013
Manuscript Accepted: May 8, 2013
Published: June 17, 2013

Virtual Issues
Hyperbolic Metamaterials (2013) Optics Express

Citation
Yu Guo and Zubin Jacob, "Thermal hyperbolic metamaterials," Opt. Express 21, 15014-15019 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-12-15014


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer Verlag, 2009).
  2. J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Env. Sci2(6), 559–588 (2009). [CrossRef]
  3. Z. M. Zhang and I. Ebrary, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  4. J. B. Pendry, “Radiative exchange of heat between nanostructures,” J. Phys. Condens. Matter11(35), 6621–6633 (1999). [CrossRef]
  5. G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment Of Electrons, Molecules, Phonons, and Photons (Oxford University, 2005).
  6. S. Silverman, “The emissivity of globar,” J. Opt. Soc. Am.38(11), 989 (1948). [PubMed]
  7. D. L. C. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystal slabs,” Opt. Express14(19), 8785–8796 (2006). [CrossRef] [PubMed]
  8. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98(24), 241105 (2011). [CrossRef]
  9. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011). [CrossRef] [PubMed]
  10. S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express21(S1Suppl 1), A96–A110 (2013). [CrossRef] [PubMed]
  11. A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett.85(7), 1548–1551 (2000). [CrossRef] [PubMed]
  12. K. G. Balmain, A. Luttgen, and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” Antennas Wirel. Propag. Lett. IEEE1(1), 146–149 (2002). [CrossRef]
  13. V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B71(20), 201101 (2005). [CrossRef]
  14. D. R. Smith, P. Kolinko, and D. Schurig, “Negative refraction in indefinite media,” J. Opt. Soc. Am. B21(5), 1032–1043 (2004). [CrossRef]
  15. C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14(6), 063001 (2012). [CrossRef]
  16. Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron.2012, 1–9 (2012). [CrossRef]
  17. E. E. Narimanov and I. I. Smolyaninov, “Beyond Stefan-Boltzmann law: thermal hyper-conductivity,” Arxiv Prepr. Arxiv11095444 (2011).
  18. Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett.101(13), 131106 (2012). [CrossRef]
  19. S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett.109(10), 104301 (2012). [CrossRef] [PubMed]
  20. I. S. Nefedov and C. R. Simovski, “Giant radiation heat transfer through micron gaps,” Phys. Rev. B84(19), 195459 (2011). [CrossRef]
  21. A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett.82(20), 3544–3546 (2003). [CrossRef]
  22. D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B4(10), 3303–3314 (1971). [CrossRef]
  23. S.-A. Biehs, E. Rousseau, and J.-J. Greffet, “Mesoscopic description of radiative heat transfer at the nanoscale,” Phys. Rev. Lett.105(23), 234301 (2010). [CrossRef] [PubMed]
  24. G. Bimonte and E. Santamato, “General theory of electromagnetic fluctuations near a homogeneous surface in terms of its reflection amplitudes,” Phys. Rev. A76(1), 013810 (2007). [CrossRef]
  25. Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010). [CrossRef]
  26. Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect: radiative decay engineering with metamaterials,” Appl. Phys. Lett.100(18), 181105 (2012). [CrossRef]
  27. D. Korobkin, B. Neuner, C. Fietz, N. Jegenyes, G. Ferro, and G. Shvets, “Measurements of the negative refractive index of sub-diffraction waves propagating in an indefinite permittivity medium,” Opt. Express18(22), 22734–22746 (2010). [CrossRef] [PubMed]
  28. M. Albooyeh, D. Morits, and C. R. Simovski, “Electromagnetic characterization of substrated metasurfaces,” Metamaterials (Amst.)5(4), 178–205 (2011). [CrossRef]
  29. M. Lapine, L. Jelinek, and R. Marqués, “Surface mesoscopic effects in finite metamaterials,” Opt. Express20(16), 18297–18302 (2012). [CrossRef] [PubMed]
  30. O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic metamaterials: Strengths and limitations,” Phys. Rev. A85(5), 053842 (2012). [CrossRef]
  31. A. V. Kildishev, U. K. Chettiar, Z. Jacob, V. M. Shalaev, and E. E. Narimanov, “Materializing a binary hyperlens design,” Appl. Phys. Lett.94(7), 071102 (2009). [CrossRef]
  32. A. C. Jones and M. B. Raschke, “Thermal infrared near-field spectroscopy,” Nano Lett.12(3), 1475–1481 (2012). [CrossRef] [PubMed]
  33. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express1(6), 1090–1099 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited