OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 15026–15036

Hyperbolic metamaterial lens with hydrodynamic nonlocal response

Wei Yan, N. Asger Mortensen, and Martijn Wubs  »View Author Affiliations


Optics Express, Vol. 21, Issue 12, pp. 15026-15036 (2013)
http://dx.doi.org/10.1364/OE.21.015026


View Full Text Article

Enhanced HTML    Acrobat PDF (1369 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.

© 2013 osa

ToC Category:
Metamaterials

History
Original Manuscript: April 18, 2013
Revised Manuscript: May 14, 2013
Manuscript Accepted: May 15, 2013
Published: June 17, 2013

Virtual Issues
Hyperbolic Metamaterials (2013) Optics Express

Citation
Wei Yan, N. Asger Mortensen, and Martijn Wubs, "Hyperbolic metamaterial lens with hydrodynamic nonlocal response," Opt. Express 21, 15026-15036 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-12-15026


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett.90, 077405 (2003). [CrossRef] [PubMed]
  2. I. I. Smolyaninov, “Vacuum in a Strong Magnetic Field as a Hyperbolic Metamaterial,” Phys. Rev. Lett.107, 253903 (2011). [CrossRef]
  3. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336, 205–209 (2012). [CrossRef] [PubMed]
  4. Z. Jacob, I. Smolyaninov, and E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett.100, 181105 (2012).
  5. A. N. Poddubny, P. A. Belov, G. V. Naik, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A84, 023807 (2011). [CrossRef]
  6. T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett.99, 151115 (2011). [CrossRef]
  7. M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett.94, 151105 (2009). [CrossRef]
  8. P. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B73, 113110 (2006). [CrossRef]
  9. B. Wood, J. Pendry, and D. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74, 115116 (2006). [CrossRef]
  10. X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies,” Phys. Rev. B75, 045103 (2007). [CrossRef]
  11. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B74, 075103 (2006). [CrossRef]
  12. Z. Jacob, L. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express14, 8427–8256 (2006). [CrossRef]
  13. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686 (2007). [CrossRef] [PubMed]
  14. M. Yan and N. A. Mortensen, “Hollow-core infrared fiber incorporating metal-wire metamaterial,” Opt. Express17, 14851–14864 (2009). [CrossRef] [PubMed]
  15. C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14, 063001 (2012). [CrossRef]
  16. J. Elser, V. Podolksiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett.90, 191109 (2007).
  17. A. Chebykin, A. Orlov, A. Vozianova, S. Maslovski, Y. S. Kivshar, and P. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B84, 115438 (2011). [CrossRef]
  18. A. Chebykin, A. Orlov, C. Simovski, Y. S. Kivshar, and P. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B86, 115420 (2012). [CrossRef]
  19. L. Shen, T. Yang, and Y. Chau, “Effect of internal period on the optical dispersion of indefinite-medium materials,” Phys. Rev. B77, 205124 (2008). [CrossRef]
  20. L. Shen, T. Yang, and Y. Chau, “50/50 beam splitter using a one-dimensional metal photonic crystal with parabo-lalike dispersion,” Appl. Phys. Lett.90, 251909 (2007). [CrossRef]
  21. F. Bloch, “Bremsvermögen von Atomen mit mehreren Elektronen,” Z. Phys. A81, 363–376 (1933).
  22. A. D. Boardman, Electromagnetic Surface Modes (John Wiley and Sons, Chichester, 1982).
  23. W. L. Mochán, M. Castillo-Mussot, and R. G. Barrera, “Effect of plasma waves on the optical properties of metal-insulator superlattices,” Phys. Rev. B15, 1088–1098 (1987). [CrossRef]
  24. C. David and F. J. García de Abajo, “Spatial nonlocality in the optical response of metal nanoparticles,” J. Phys. Chem. C115, 19470–19475 (2011). [CrossRef]
  25. F. J. García de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C112, 17983–17987 (2008). [CrossRef]
  26. S. Raza, G. Toscano, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B84, 121412(R) (2011). [CrossRef]
  27. J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483, 421–427 (2012). [CrossRef] [PubMed]
  28. C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012). [CrossRef] [PubMed]
  29. S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A.-P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics2, 131 (2013). [CrossRef]
  30. G. Toscano, S. Raza, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Modified field enhancement and extinction in plasmonic nanowire dimers due to nonlocal response,” Opt. Express13, 4176–4188 (2012). [CrossRef]
  31. G. Toscano, S. Raza, S. Xiao, M. Wubs, A.-P. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Surface-enhanced Raman spectroscopy (SERS): nonlocal limitations,” Opt. Lett.37, 2538–2540 (2012). [CrossRef] [PubMed]
  32. A. I. Fernández-Domínguez, A. Wiener, F. J. García-Vidal, S. A. Maier, and J. B. Pendry, “Transformation-optics description of nonlocal effects in plasmonic nanostructures,” Phys. Rev. Lett.108, 106802 (2012). [CrossRef] [PubMed]
  33. W. Yan, M. Wubs, and N. A. Mortensen, “Hyperbolic metamaterials: nonlocal response regularizes broadband supersingularity,” Phys. Rev. B86, 205429 (2012). [CrossRef]
  34. P. Jewsbury, “Electrodynamic boundary conditions at metal interfaces,” J. Phys. F: Met. Phys.11, 195–206 (1981). [CrossRef]
  35. R. C. Monreal, T. J. Antosiewicz, and S. P. Apell, “Plasmons do not go that quantum,” arXiv:1304.3023 (2013).
  36. L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, “Performance of nonlocal optics when applied to plasmonic nanostructures,” J. Phys. Chem. C117, 8941–8949 (2013). [CrossRef]
  37. T. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: Nonlocal effects in coupled nanowire dimer,” arXiv:1302.3339 (2013).
  38. K. Andersen, K. L. Jensen, and K. S. Thygesen, “Hybridization of quantum plasmon modes in coupled nanowires: From the classical to the tunneling regime,” arXiv:1304.4754 (2013).
  39. N. Formica, D. S. Ghosh, A. Carrilero, T. L. Chen, R. E. Simpson, and V. Pruneri, “Ultrastable and Atomically Smooth Ultrathin Silver Films Grown on a Copper Seed Layer,” ACS Appl. Mater. Interfaces5, 3048–3053 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited