OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 15037–15047

Negative refraction, gain and nonlinear effects in hyperbolic metamaterials

Christos Argyropoulos, Nasim Mohammadi Estakhri, Francesco Monticone, and Andrea Alù  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 15037-15047 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2213 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The negative refraction and evanescent-wave canalization effects supported by a layered metamaterial structure obtained by alternating dielectric and plasmonic layers is theoretically analyzed. By using a transmission-line analysis, we formulate a way to rapidly analyze the negative refraction operation for given available materials over a broad range of frequencies and design parameters, and we apply it to broaden the bandwidth of negative refraction. Our analytical model is also applied to explore the possibility of employing active layers for loss compensation. Nonlinear dielectrics can also be considered within this approach, and they are explored in order to add tunability to the optical response, realizing positive-to-zero-to-negative refraction at the same frequency, as a function of the input intensity. Our findings may lead to a better physical understanding and improvement of the performance of negative refraction and subwavelength imaging in layered metamaterials, paving the way towards the design of gain-assisted hyperlenses and tunable nonlinear imaging devices.

© 2013 OSA

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: May 13, 2013
Revised Manuscript: May 27, 2013
Manuscript Accepted: May 28, 2013
Published: June 17, 2013

Virtual Issues
Hyperbolic Metamaterials (2013) Optics Express

Christos Argyropoulos, Nasim Mohammadi Estakhri, Francesco Monticone, and Andrea Alù, "Negative refraction, gain and nonlinear effects in hyperbolic metamaterials," Opt. Express 21, 15037-15047 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express14(18), 8247–8256 (2006). [CrossRef] [PubMed]
  2. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B74(7), 075103 (2006). [CrossRef]
  3. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74(11), 115116 (2006). [CrossRef]
  4. A. A. Govyadinov and V. A. Podolskiy, “Metamaterial photonic funnels for subdiffraction light compression and propagation,” Phys. Rev. B73(15), 155108 (2006). [CrossRef]
  5. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater.6(12), 946–950 (2007). [CrossRef] [PubMed]
  6. D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat Commun3, 1205 (2012). [CrossRef] [PubMed]
  7. C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14(6), 063001 (2012). [CrossRef]
  8. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007). [CrossRef] [PubMed]
  9. I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315(5819), 1699–1701 (2007). [CrossRef] [PubMed]
  10. P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B73(11), 113110 (2006). [CrossRef]
  11. M. G. Silveirinha, “Broadband negative refraction with a crossed wire mesh,” Phys. Rev. B79(15), 153109 (2009). [CrossRef]
  12. M. G. Silveirinha and A. B. Yakovlev, “Negative refraction by a uniaxial wire medium with suppressed spatial dispersion,” Phys. Rev. B81(23), 233105 (2010). [CrossRef]
  13. C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B86(20), 205130 (2012). [CrossRef]
  14. S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett.109(10), 104301 (2012). [CrossRef] [PubMed]
  15. Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett.101(13), 131106 (2012). [CrossRef]
  16. A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A84(2), 023807 (2011). [CrossRef]
  17. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336(6078), 205–209 (2012). [CrossRef] [PubMed]
  18. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  19. V. A. Podolskiy and E. E. Narimanov, “Near-sighted superlens,” Opt. Lett.30(1), 75–77 (2005). [CrossRef] [PubMed]
  20. D. M. Pozar, Microwave Engineering, 3rd ed. (Wiley, 2004).
  21. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).
  22. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010). [CrossRef] [PubMed]
  23. Y. Sivan, S. Xiao, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Frequency-domain simulations of a negative-index material with embedded gain,” Opt. Express17(26), 24060–24074 (2009). [CrossRef] [PubMed]
  24. X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, and A. V. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express19(25), 25242–25254 (2011). [CrossRef] [PubMed]
  25. R. S. Savelev, I. V. Shadrivov, P. A. Belov, N. N. Rosanov, S. V. Fedorov, A. A. Sukhorukov, and Y. S. Kivshar, “Loss compensation in metal-dielectric layered metamaterials,” Phys. Rev. B87(11), 115139 (2013). [CrossRef]
  26. R. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).
  27. D. A. Powell, A. Alù, B. Edwards, A. Vakil, Y. S. Kivshar, and N. Engheta, “Nonlinear control of tunneling through an epsilon-near-zero channel,” Phys. Rev. B79(24), 245135 (2009). [CrossRef]
  28. C. Argyropoulos, P. Y. Chen, G. D'Aguano, N. Engheta, and A. Alù, “Boosting optical nonlinearities in epsilon-near-zero plasmonic channels,” Phys. Rev. B85(4), 045129 (2012). [CrossRef]
  29. V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spatial Dispersion, and Excitons, 2nd ed. (Springer-Verlag, 1984).
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  31. C. S. T. Design Studio, 2011, www.cst.com .
  32. A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B84(4), 045424 (2011). [CrossRef]
  33. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A.109(23), 8834–8838 (2012). [CrossRef] [PubMed]
  34. P.-Y. Chen and A. Alù, “Optical nanoantenna arrays loaded with nonlinear materials,” Phys. Rev. B82(23), 235405 (2010). [CrossRef]
  35. P.-Y. Chen, M. Farhat, and A. Alù, “Bistable and self-tunable negative-index metamaterial at optical frequencies,” Phys. Rev. Lett.106(10), 105503 (2011). [CrossRef] [PubMed]
  36. C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett.108(26), 263905 (2012). [CrossRef] [PubMed]
  37. M. Scalora, N. Mattiucci, G. D’Aguanno, M. Larciprete, and M. J. Bloemer, “Nonlinear pulse propagation in one-dimensional metal-dielectric multilayer stacks: ultrawide bandwidth optical limiting,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(1), 016603 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited