OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 15048–15064

Hyperbolic metamaterials: new physics behind a classical problem

Vladimir P. Drachev, Viktor A. Podolskiy, and Alexander V. Kildishev  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 15048-15064 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3008 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Hyperbolic materials enable numerous surprising applications that include far-field subwavelength imaging, nanolithography, and emission engineering. The wavevector of a plane wave in these media follows the surface of a hyperboloid in contrast to an ellipsoid for conventional anisotropic dielectric. The consequences of hyperbolic dispersion were first studied in the 50’s pertaining to the problems of electromagnetic wave propagation in the Earth’s ionosphere and in the stratified artificial materials of transmission lines. Recent years have brought explosive growth in optics and photonics of hyperbolic media based on metamaterials across the optical spectrum. Here we summarize earlier theories in the Clemmow’s prescription for transformation of the electromagnetic field in hyperbolic media and provide a review of recent developments in this active research area.

© 2013 OSA

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: May 23, 2013
Revised Manuscript: June 10, 2013
Manuscript Accepted: June 10, 2013
Published: June 17, 2013

Virtual Issues
Hyperbolic Metamaterials (2013) Optics Express

Vladimir P. Drachev, Viktor A. Podolskiy, and Alexander V. Kildishev, "Hyperbolic metamaterials: new physics behind a classical problem," Opt. Express 21, 15048-15064 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. G. Budden, Radio Waves in the Ionosphere(Cambridge University, 1961).
  2. P. Clemmow, “The theory of electromagnetic waves in a simple anisotropic medium,” Proc. IEEE110(1), 101–106 (1963).
  3. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (Wiley-IEEE, 1973).
  4. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev.106(5), 874–881 (1957). [CrossRef]
  5. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP2, 10 (1956).
  6. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett.90(7), 077405 (2003). [CrossRef] [PubMed]
  7. V. Bunkin, “On radiation in anisotropic media,” Sov. Phys. JETP5(2), 277–283 (1957).
  8. H. Kogelnik, “On electromagnetic radiation in magneto-ionic media,” J. Res. Nat. Bur. Stand. D.64D, 515 (1960).
  9. M. Born and E. Wolf, Principles of Optics(Cambridge University, 1999).
  10. A. S. Potemkin, A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Green function for hyperbolic media,” Phys. Rev. A86(2), 023848 (2012). [CrossRef]
  11. H. H. Kuehl, “Electromagnetic radiation from an electric dipole in a cold anisotropic plasma,” Plasma Phys. Fluids5(9), 1095 (1962). [CrossRef]
  12. K. G. Balmain, A. A. E. Luttgen, and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” IEEE Antennas Wirel. Propag. Lett.1(1), 146–149 (2002). [CrossRef]
  13. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express14(18), 8247–8256 (2006). [CrossRef] [PubMed]
  14. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B74(7), 075103 (2006). [CrossRef]
  15. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007). [CrossRef] [PubMed]
  16. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315(5819), 1699–1701 (2007). [CrossRef] [PubMed]
  17. W. Wang, H. Xing, L. Fang, Y. Liu, J. Ma, L. Lin, C. Wang, and X. Luo, “Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial,” Opt. Express16(25), 21142–21148 (2008). [CrossRef] [PubMed]
  18. Y. Xiong, Z. Liu, and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm,” Appl. Phys. Lett.94(20), 203108 (2009). [CrossRef]
  19. S. Thongrattanasiri and V. A. Podolskiy, “Hypergratings: nanophotonics in planar anisotropic metamaterials,” Opt. Lett.34(7), 890–892 (2009). [CrossRef] [PubMed]
  20. L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett.103(3), 033902 (2009). [CrossRef] [PubMed]
  21. G. Ren, Z. Lai, C. Wang, Q. Feng, L. Liu, K. Liu, and X. Luo, “Subwavelength focusing of light in the planar anisotropic metamaterials with zone plates,” Opt. Express18(17), 18151–18157 (2010). [CrossRef] [PubMed]
  22. C. Ma and Z. Liu, “A super resolution metalens with phase compensation mechanism,” Appl. Phys. Lett.96(18), 183103 (2010). [CrossRef] [PubMed]
  23. G. Li, J. Li, and K. W. Cheah, “Subwavelength focusing using a hyperbolic medium with a single slit,” Appl. Opt.50(31), G27–G30 (2011). [CrossRef] [PubMed]
  24. S. Ishii, A. V. Kildishev, E. Narimanov, V. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev.7(2), 265–271 (2013). [CrossRef]
  25. J. Kim, V. P. Drachev, Z. Jacob, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Improving the radiative decay rate for dye molecules with hyperbolic metamaterials,” Opt. Express20(7), 8100–8116 (2012). [CrossRef] [PubMed]
  26. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A.109(23), 8834–8838 (2012), doi:. [CrossRef] [PubMed]
  27. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater.6(12), 946–950 (2007). [CrossRef] [PubMed]
  28. M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett.35(11), 1863–1865 (2010). [CrossRef] [PubMed]
  29. R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett.102(12), 127405 (2009). [CrossRef] [PubMed]
  30. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science321(5891), 930 (2008). [CrossRef] [PubMed]
  31. J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: graphite,” Appl. Phys. Lett.98(10), 101901 (2011). [CrossRef]
  32. L. V. Alekseyev, V. A. Podolskiy, and E. E. Narimanov, “Homogeneous Hyperbolic Systems for Terahertz and Far-Infrared Frequencies,” Adv. Optoelectron.2012, 267564 (2012). [CrossRef]
  33. E. Gerlach, P. Grosse, M. Rautenberg, and W. Senske, “Dynamical conductivity and plasmon excitation in Bi,” Phys. Status Solidi B75(2), 553–558 (1976). [CrossRef]
  34. Y. Zhang, B. Fluegel, and A. Mascarenhas, “Total negative refraction in real crystals for ballistic electrons and light,” Phys. Rev. Lett.91(15), 157404 (2003). [CrossRef] [PubMed]
  35. P. Belov, “Backward waves and negative refraction in uniaxial dielectrics with negative dielectric permittivity along the anisotropy axis,” Microw. Opt. Technol. Lett.37(4), 259–263 (2003). [CrossRef]
  36. V. Veselago, “The electrodynamics of substances with simultaneously negative values of epsilon and mu,” Sov. Phys. Usp.10(4), 509–514 (1968). [CrossRef]
  37. V. Podolskiy and E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B71(20), 201101(R) (2005). [CrossRef]
  38. L. V. Alekseyev and E. Narimanov, “Slow light and 3D imaging with non-magnetic negative index systems,” Opt. Express14(23), 11184–11193 (2006). [CrossRef] [PubMed]
  39. Y. Xiong, Z. Liu, and X. Zhang, “Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers,” Appl. Phys. Lett.93(11), 111116 (2008). [CrossRef]
  40. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  41. J. B. Pendry, “Perfect cylindrical lenses,” Opt. Express11(7), 755–760 (2003). [CrossRef] [PubMed]
  42. S. A. Ramakrishna and J. B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B67(20), 201101 (2003). [CrossRef]
  43. N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, “Optical and dielectric properties of partially resonant composites,” Phys. Rev. B Condens. Matter49(12), 8479–8482 (1994). [CrossRef] [PubMed]
  44. I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons,” Phys. Rev. Lett.94(5), 057401 (2005). [CrossRef] [PubMed]
  45. R. K. Fisher and R. W. Gould, “Resonance cones in the field patterns of a short antenna in anisotropic plasma,” Phys. Rev. Lett.22(21), 1093–1095 (1969). [CrossRef]
  46. S. Feng and J. M. Elson, “Diffraction-suppressed high-resolution imaging through metallodielectric nanofilms,” Opt. Express14(1), 216–221 (2006). [CrossRef] [PubMed]
  47. P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B73(11), 113110 (2006). [CrossRef]
  48. D. Schurig and D. R. Smith, “Sub-diffraction imaging with compensating bilayers,” New J. Phys.7, 162 (2005). [CrossRef]
  49. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  50. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  51. Z. Jacob, I. Smolyaninov, and E. Narimanov, “Broadband Purcell effect: radiative decay engineering with metamaterials”, arXiv:0910.3981 [physics.optics]. [CrossRef]
  52. I. I. Smolyaninov and E. E. Narimanov, “Metric Signature Transitions in Optical Metamaterials,” Phys. Rev. Lett.105(6), 067402 (2010). [CrossRef] [PubMed]
  53. L. V. Alekseyev and E. Narimanov, Radiative decay engineering in metamaterials,” in Tutorials in Metamaterials, ed. M.A. Noginov and V.A .Podolskiy (Taylor & Francis Group, 2012) pp. 209–223.
  54. O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Dipole radiation near hyperbolic metamaterials: applicability of effective-medium approximation,” Opt. Lett.36(13), 2530–2532 (2011). [CrossRef] [PubMed]
  55. A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A84(2), 023807 (2011). [CrossRef]
  56. B. Wood, J. Pendry, and D. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74(11), 115116 (2006). [CrossRef]
  57. A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of Purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B86(3), 035148 (2012). [CrossRef]
  58. C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14(6), 063001 (2012). [CrossRef]
  59. S. I. Maslovski and M. G. Silveirinha, “Mimicking Boyer’s Casimir repulsion with a nanowire material,” Phys. Rev. A83(2), 022508 (2011). [CrossRef]
  60. O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic metamaterials: Strengths and limitations,” Phys. Rev. A85(5), 053842 (2012). [CrossRef]
  61. H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological Transitions in Metamaterials,” Science336(6078), 205–209 (2012). [CrossRef] [PubMed]
  62. R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys.10(12), 125022 (2008). [CrossRef]
  63. K. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin.1, 693–701 (1970). [CrossRef]
  64. W. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt.45(4), 661–699 (1998). [CrossRef]
  65. G. Ford and W. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113(4), 195–287 (1984). [CrossRef]
  66. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986). [CrossRef] [PubMed]
  67. E. H. Hellen and D. Axelrod, “Fluorescence emission at dielectric and metal-film interfaces,” J. Opt. Soc. Am. B4(3), 337–350 (1987). [CrossRef]
  68. G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett.88(5), 051109 (2006). [CrossRef]
  69. J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit,” J. Opt. Soc. Am. B24(8), 1968–1980 (2007). [CrossRef]
  70. A. Govyadinov and V. Podolskiy, “Metamaterial photonic funnels for subdiffraction light compression and propagation,” Phys. Rev. B73(15), 155108 (2006). [CrossRef]
  71. M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett.97(15), 157403 (2006). [CrossRef] [PubMed]
  72. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  73. W. Cai, U. Chettiar, A. Kildishev, and V. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics1(4), 224–227 (2007). [CrossRef]
  74. P. Yeh, A. Yariv, and C. Hong, “Electromagnetic propagation in periodic stratified media.I. General theory,” J. Opt. Soc. Am.67(4), 423 (1977). [CrossRef]
  75. A. P. Vinogradov, A. I. Ignatov, A. M. Merzlikin, S. A. Tretyakov, and C. R. Simovski, “Additional effective medium parameters for composite materials (excess surface currents),” Opt. Express19(7), 6699–6704 (2011). [CrossRef] [PubMed]
  76. V. Agranovich and V. Kravtsov, “Notes on crystal optics of superlattices,” Solid State Commun.55(1), 85–90 (1985). [CrossRef]
  77. S. I. Pekar, “The theory of electromagnetic waves in crystal in which excitons are produced,” Sov. Phys. JETP6, 785–796 (1958).
  78. G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol.6(2), 107–111 (2011). [CrossRef] [PubMed]
  79. P. A. Belov, R. Marqués, S. I. Maslovski, I. S. Nefedov, M. Silverinha, M. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B67(11), 113103 (2003). [CrossRef]
  80. A. Chebykin, A. Orlov, A. Vozianova, S. Maslovski, Y. Kivshar, and P. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B84(11), 115438 (2011). [CrossRef]
  81. M. J. Thompson, M. J. DeVries, T. E. Tiwald, and J. A. Woollam, “Determination of optical anisotropy in calcite from ultraviolet to mid-infrared by generalized ellipsometry,” Thin Solid Films313–314, 341–346 (1998). [CrossRef]
  82. L. J. Prokopeva, D. P. Brown, X. Ni, V. P. Drachev, A. Urbas, and A. Kildishev, “Pulse shaping using optical metamaterials with naturally anisotropic structural elements,” in CLEO: QELS-Fundamental Science, OSA Technical Digest (Optical Society of America), 2012.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited