OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15081–15089

Nanoimprinted plasmonic nanocavity arrays

Sangsik Kim, Yi Xuan, Vladimir P. Drachev, Leo T. Varghese, Li Fan, Minghao Qi, and Kevin J. Webb  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 15081-15089 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1680 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate high resonant absorption of visible light with a plasmonic nanocavity chain structure fabricated through resistless nanoimprinting in metal (RNIM). The RNIM approach provides a simple, reproducible, and accurate means to fabricate metallic nanopatterns with high fidelity. The nanocavities are shown to be efficiently excited using normally incident light, and the resonant wavelength can be controlled by either the width or the depth of the cavity. Numerical simulations confirm the experimental observations, and illustrate the behavior of the nanocavity chain waveguide and insensitivity to incident angle. The resonant absorption is due to the excitation of a localized metal-insulator-metal cavity mode. The interacting surface waves allow cavity lengths on the order of ten nanometers for light having a free space wavelength of about four hundred nanometers. Coupling of the cavities with an intervening surface plasmon wave results in a collective excitation and a chain waveguide mode that should prove valuable for more sensitive detection based on surface enhanced Raman scattering.

© 2013 OSA

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(220.4241) Optical design and fabrication : Nanostructure fabrication
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: March 11, 2013
Revised Manuscript: April 25, 2013
Manuscript Accepted: April 26, 2013
Published: June 17, 2013

Sangsik Kim, Yi Xuan, Vladimir P. Drachev, Leo T. Varghese, Li Fan, Minghao Qi, and Kevin J. Webb, "Nanoimprinted plasmonic nanocavity arrays," Opt. Express 21, 15081-15089 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Webb and J. Li, “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B73, 033401 (2006). [CrossRef]
  2. P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett.10, 4880–4883 (2010). [CrossRef]
  3. N. M. B. Perney, F. J. García de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B76, 035426 (2007). [CrossRef]
  4. H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett.89, 211126 (2006). [CrossRef]
  5. Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B75, 035411 (2007). [CrossRef]
  6. V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett.9, 3489–3493 (2009). [CrossRef] [PubMed]
  7. A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, and H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett.98, 203104–203106 (2011). [CrossRef]
  8. A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,” J. Vac. Sci. Technol. B29,06FF01 (2011). [CrossRef]
  9. S. Buzzi, F. Robin, V. Callegari, and J. F. Löffler, “Metal direct nanoimprinting for photonics,” Microelectron. Eng.85, 419–424 (2008). [CrossRef]
  10. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “25-nanometer resolution,” Science272, 85–87 (1996). [CrossRef]
  11. S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett.7, 1869–1877 (2007). [CrossRef] [PubMed]
  12. A. T. Fafarman, S. H. Hong, H. Caglayan, X. Ye, B. T. Diroll, T. Paik, N. Engheta, C. B. Murray, and C. R. Kagan, “Chemically tailored dielectric-to-metal transition for the design of metamaterials from nanoimprinted colloidal nanocrystals,” Nano Lett.13, 350–357 (2013). [CrossRef]
  13. H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, “Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure,” Microelectron. Eng.83, 893–896 (2006). [CrossRef]
  14. L. T. Varghese, L. Fan, Y. Xuan, C. Tansarawiput, S. Kim, and M. Qi, “Resistless nanoimprinting in metal for plasmonic nanostructures,” Small, http://dx.doi.org/10.1002/smll.201300168 (2013)
  15. K. J. Webb and J. Li, “Resonant slot optical guiding in metallic nanoparticle chains,” Phys. Rev. B72, 201402 (2005). [CrossRef]
  16. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998) vol. 3.
  17. J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483, 421–427 (2012). [CrossRef] [PubMed]
  18. S. Shivanand, A. Ludwig, and K. J. Webb, “Impact of surface roughness on the effective dielectric constants and subwavelength image resolution of metal–insulator stack lenses,” Opt. Lett.37, 4317–4319 (2012). [PubMed]
  19. K. J. Webb and J. Li, “Resonant waveguide field enhancement in dimers,” Opt. Lett.31, 3348–3350 (2006). [CrossRef] [PubMed]
  20. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensor Actuat B-Chem.54, 3–15 (1999). [CrossRef]
  21. A. Dhawan, M. Canva, and T. Vo-Dinh, “Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing,” Opt. Express19, 787–813 (2011). [CrossRef] [PubMed]
  22. H. Liu, Shivanand, and K. J. Webb, “Optical circuits from anisotropic films,” Phys. Rev. B79, 094203 (2009). [CrossRef]
  23. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. B69, 681 (1946).
  24. H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2, 484–488 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited