OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15144–15154

Coupling light into a slow-light photonic-crystal waveguide from a free-space normally-incident beam

P. Hamel, P. Grinberg, C. Sauvan, P. Lalanne, A. Baron, A.M. Yacomotti, I. Sagnes, F. Raineri, K. Bencheikh, and J.A. Levenson  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 15144-15154 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1308 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a coupler design allowing normally-incident light coupling from free-space into a monomode photonic crystal waveguide operating in the slow-light regime. Numerical three-dimensional calculations show that extraction efficiencies as high as 80% can be achieved for very large group indices up to 100. We demonstrate experimentally the device feasibility by coupling and extracting light from a photonic crystal waveguide over a large group-index range (from 10 to 60). The measurements are in good agreement with theoretical predictions. We also study numerically the impact of various geometrical parameters on the coupler performances.

© 2013 OSA

OCIS Codes
(230.7400) Optical devices : Waveguides, slab
(220.4241) Optical design and fabrication : Nanostructure fabrication
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Integrated Optics

Original Manuscript: March 14, 2013
Revised Manuscript: May 24, 2013
Manuscript Accepted: May 29, 2013
Published: June 18, 2013

P. Hamel, P. Grinberg, C. Sauvan, P. Lalanne, A. Baron, A.M. Yacomotti, I. Sagnes, F. Raineri, K. Bencheikh, and J.A. Levenson, "Coupling light into a slow-light photonic-crystal waveguide from a free-space normally-incident beam," Opt. Express 21, 15144-15154 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett.87(25), 253902 (2001). [CrossRef] [PubMed]
  2. T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008). [CrossRef]
  3. T. F. Krauss, “Why do we need slow light?” Nat. Photonics2(8), 448–450 (2008). [CrossRef]
  4. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express17(4), 2944–2953 (2009). [CrossRef] [PubMed]
  5. K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, “Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line-defect,” Opt. Express17(9), 7206–7216 (2009). [CrossRef] [PubMed]
  6. J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett.32(18), 2638–2640 (2007). [CrossRef] [PubMed]
  7. Y. A. Vlasov and S. J. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett.31(1), 50–52 (2006). [CrossRef] [PubMed]
  8. P. Barclay, K. Srinivasan, and O. Painter, “Design of photonic crystal waveguides for evanescent coupling to optical fiber tapers and integration with high- Q cavities,” J. Opt. Soc. Am. B20(11), 2274 (2003). [CrossRef]
  9. M. W. Lee, C. Grillet, C. G. Poulton, C. Monat, C. L. C. Smith, E. Mägi, D. Freeman, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Characterizing photonic crystal waveguides with an expanded k-space evanescent coupling technique,” Opt. Express16(18), 13800–13808 (2008). [CrossRef] [PubMed]
  10. Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett.95(6), 061105 (2009). [CrossRef]
  11. S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express11(22), 2927–2939 (2003). [CrossRef] [PubMed]
  12. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express12(8), 1551–1561 (2004). [CrossRef] [PubMed]
  13. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002). [CrossRef]
  14. F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol.25(1), 151–156 (2007). [CrossRef]
  15. N. Le Thomas, R. Houdré, L. Frandsen, J. Fage-Pedersen, A. Lavrinenko, and P. Borel, “Grating-assisted superresolution of slow waves in Fourier space,” Phys. Rev. B76(3), 035103 (2007). [CrossRef]
  16. C.-C. Tsai, J. Mower, and D. Englund, “Directional free-space coupling from photonic crystal waveguides,” Opt. Express19(21), 20586–20596 (2011). [CrossRef] [PubMed]
  17. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005). [CrossRef]
  18. S. Mazoyer, P. Lalanne, J. C. Rodier, J. P. Hugonin, M. Spasenović, L. Kuipers, D. M. Beggs, and T. F. Krauss, “Statistical fluctuations of transmission in slow light photonic-crystal waveguides,” Opt. Express18(14), 14654–14663 (2010). [CrossRef] [PubMed]
  19. N.-V.-Q. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B82(7), 075120 (2010). [CrossRef]
  20. S. Haddadi, L. Le-Gratiet, I. Sagnes, F. Raineri, A. Bazin, K. Bencheikh, J. A. Levenson, and A. M. Yacomotti, “High quality beaming and efficient free-space coupling in L3 photonic crystal active nanocavities,” Opt. Express20(17), 18876–18886 (2012). [CrossRef] [PubMed]
  21. T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys., A Mater. Sci. Process.14, 235–254 (1977).
  22. P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photon. Rev.2(6), 514–526 (2008). [CrossRef]
  23. P. Lalanne, “Electromagnetic analysis of photonic crystal waveguides operating above the light cone,” IEEE J. Quantum Electron.38(7), 800–804 (2002). [CrossRef]
  24. G. Lecamp, J. P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express15(18), 11042–11060 (2007). [CrossRef] [PubMed]
  25. J. P. Hugonin and P. Lalanne, “Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization,” J. Opt. Soc. Am. A22(9), 1844–1849 (2005). [CrossRef] [PubMed]
  26. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A12(5), 1068–1076 (1995). [CrossRef]
  27. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A14(10), 2758–2767 (1997). [CrossRef]
  28. T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, and R. Raj, “Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys.107(6), 063103 (2010). [CrossRef]
  29. S. Mazoyer, “Lumière lente dans les guides à cristaux photoniques réels,” PhD thesis, Université Paris Sud, http://hal-iogs.archives-ouvertes.fr/docs/00/65/07/43/PDF/Total_final.pdf
  30. S. Combrié, E. Weidner, A. DeRossi, S. Bansropun, S. Cassette, A. Talneau, and H. Benisty, “Detailed analysis by Fabry-Perot method of slab photonic crystal line-defect waveguides and cavities in aluminium-free material system,” Opt. Express14(16), 7353–7361 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited