OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15183–15194

Nonlinear effects in multi-photon polaritonics

A. A. Pervishko, T. C. H. Liew, V. M. Kovalev, I. G. Savenko, and I. A. Shelykh  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15183-15194 (2013)
http://dx.doi.org/10.1364/OE.21.015183


View Full Text Article

Enhanced HTML    Acrobat PDF (1235 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We consider theoretically nonlinear effects in a semiconductor quantum well embedded inside a photonic microcavity. Two-photon absorption by a 2p exciton state is considered and investigated; the matrix element of two-photon absorption is calculated. We compute the emission spectrum of the sample and demonstrate that under coherent pumping the nonlinearity of the two photon absorption process gives rise to bistability.

© 2013 OSA

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 8, 2013
Revised Manuscript: May 25, 2013
Manuscript Accepted: May 27, 2013
Published: June 18, 2013

Citation
A. A. Pervishko, T. C. H. Liew, V. M. Kovalev, I. G. Savenko, and I. A. Shelykh, "Nonlinear effects in multi-photon polaritonics," Opt. Express 21, 15183-15194 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-15183


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, “Bose-Einstein condensation of exciton polaritons,” Nature443, 409–414 (2006). [CrossRef] [PubMed]
  2. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science316(5827), 1007–1010 (2007). [CrossRef] [PubMed]
  3. C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and p-state in an exciton-polariton condensate array,” Nature450(7169), 529–532 (2007). [CrossRef] [PubMed]
  4. A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaitre, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Vina, “Collective fluid dynamics of a polariton condensate in a semiconductor microcavity,” Nature457, 291–295 (2009). [CrossRef] [PubMed]
  5. A. Amo, J. Lefrere, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdre, E. Giacobino, and A. Bramati, “Superfluidity of polaritons in semiconductor microcavities,” Nature Phys., 5, 805–810 (2009). [CrossRef]
  6. I. Carusotto and C. Ciuti, “Probing microcavity polariton superfluidity through resonant Rayleigh scattering,” Phys. Rev. Lett.,93(16), 166401 (2004). [CrossRef]
  7. K. G. Lagoudakis, B. Pietka, M. Wouters, R. Andre, and B. Deveaud-Pledran, “Coherent oscillations in an exciton-polariton Josephson junction,” Phys. Rev. Lett.105(12), 120403 (2010). [CrossRef] [PubMed]
  8. K. G. Lagoudakis, T. Ostatnicky, A. V. Kavokin, Y. G. Rubo, R. Andre, and B. Deveaud-Pledran, “Observation of half-quantum vortices in an exciton-polariton condensate,” Science13(5955), 974–976 (2009). [CrossRef]
  9. K. G. Lagoudakis, F. Manni, B. Pietka, M. Wouters, T. C. H. Liew, V. Savona, A. V. Kavokin, R. Andre, and B. Deveaud-Pledran, “Probing the dynamics of spontaneous quantum vortices in polariton superfluids,” Phys. Rev. Lett.106(11), 115301 (2011). [CrossRef] [PubMed]
  10. G. Nardin, G. Grosso, Y. Leger, B. Pietka, F. Morier-Genoud, and B. Deveaud-Pledran, “Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid,” Nature Phys.7, 635–641 (2011). [CrossRef]
  11. A. Amo, S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet, I. Carusotto, F. Pisanello, G. Lemnager, R. Houdr, E. Giacobino, C. Ciuti, and A. Bramati, “Polariton superfluids reveal quantum hydrodynamic solitons,” Science332(6034), 1167–1170 (2011). [CrossRef] [PubMed]
  12. G. Grosso, G. Nardin, F. Morier-Genoud, Y. Léger, and B. Deveaud-Plédran, “Soliton instabilities and vortex street formation in a polariton quantum fluid,” Phys. Rev. Lett.107(24), 245301 (2011). [CrossRef]
  13. M. Sich, D. N. Krizhanovskii, M. S. Skolnick, A. V. Gorbach, R. Hartley, D. V. Skryabin, E. A. Cerda-Mndez, K. Biermann, R. Hey, and P. V. Santoset, “Observation of bright polariton solitons in a semiconductor microcavity,” Nature Photon.6, 50–55 (2012). [CrossRef]
  14. R. Hivet, H. Flayac, D. D. Solnyshkov, D. Tanese, T. Boulier, D. Andreoli, E. Giacobino, J. Bloch, A. Bramati, G. Malpuech, and A. Amo, “Half-solitons in a polariton quantum fluid behave like magnetic monopoles,” Nature Phys.8, 724–728 (2012). [CrossRef]
  15. F. Manni, K. G. Lagoudakis, T. C. H. Liew, R. Andre, and B. Deveaud-Pledran, “Spontaneous pattern formation in a polariton condensate,” Phys. Rev. Lett.107(10), 106401 (2011). [CrossRef] [PubMed]
  16. G. Christmann, G. Tosi, N. G. Berloff, P. Tsotsis, P. S. Eldridge, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Polariton ring condensates and sunflower ripples in an expanding quantum liquid,” Phys. Rev. B85(23), 235303 (2012). [CrossRef]
  17. E. Kammann, T. C. H. Liew, H. Ohadi, P. Cilibrizzi, P. Tsotsis, Z. Hatzopoulos, P. G. Savvidis, A. V. Kavokin, and P. G. Lagoudakis, “Nonlinear optical spin Hall effect and long-range spin transport in polariton lasers,” Phys. Rev. Lett.109(3), 036404 (2012). [CrossRef] [PubMed]
  18. S. Christopoulos, G. Baldassarri Höger von Högersthal, A. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007). [CrossRef] [PubMed]
  19. Ayan Das, Junseok Heo, Marc Jankowski, Wei Guo, Lei Zhang, Hui Deng, and Pallab Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett.107(6), 066405 (2011). [CrossRef] [PubMed]
  20. R. Schmidt-Grund, B. Rheinlnder, C. Czekalla, G. Benndorf, H. Hochmut, A. Rahm, M. Lorenz, and M. Grundmann, “ZnO based planar and micropillar resonators,” Superlattic. Microstruct.41(5–6), 360–363 (2007). [CrossRef]
  21. S. Kena-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nature Photonics4, 371–375 (2010). [CrossRef]
  22. T. C. H. Liew, I. A. Shelykh, and G. Malpuech, “Polaritonic devices,” Physica E43(9), 1543–1568 (2011). [CrossRef]
  23. K. V. Kavokin, M. A. Kaliteevski, R. A. Abram, A. V. Kavokin, S. Sharkova, and I. A. Shelykh, “Stimulated emission of terahertz radiation by exciton-polariton lasers,” Appl. Phys. Lett.97(20), 201111 (2010). [CrossRef]
  24. A. V. Kavokin, I. A. Shelykh, T. Taylor, and M. M. Glazov, “Vertical cavity surface emitting terahertz laser,” Phys. Rev. Lett.108(19), 197401 (2012). [CrossRef] [PubMed]
  25. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69(23), 3314–3317 (1992). [CrossRef] [PubMed]
  26. I. G. Savenko, O. V. Kibis, and I. A. Shelykh, “Asymmetric quantum dot in a microcavity as a nonlinear optical element,” Phys. Rev. A85(5), 053818 (2012). [CrossRef]
  27. A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Oxford University, (2007)). [CrossRef]
  28. V. D. Kulakovskii, A. I. Tartakovskii, D. N. Krizhanovskii, A. Armitage, J. S. Roberts, and M. S. Skolnick, “Two-dimensional excitonic polaritons and their interaction,” Phys. Usp.43(8), 853–857 (2000). [CrossRef]
  29. N. A. Gippius, S. G. Tikhodeev, V. D. Kulakovskii, D. N. Krizhanovskii, and A. I. Tartakovskii, “Nonlinear dynamics of polariton scattering in semiconductor microcavity: Bistability vs. stimulated scattering,” Europhys. Lett.67(6), 997 (2004). [CrossRef]
  30. D. M. Whittaker, “Effects of polariton-energy renormalization in the microcavity optical parametric oscillator,” Phys. Rev. B71(11), 115301 (2005). [CrossRef]
  31. A. Baas, J. P. Karr, M. Romanelli, A. Bramati, and E. Giacobino, “Optical bistability in semiconductor microcavities in the nondegenerate parametric oscillation regime: Analogy with the optical parametric oscillator,” Phys. Rev. B70(16), 161307(R) (2004). [CrossRef]
  32. N. A. Gippius, I. A. Shelykh, D. D. Solnyshkov, S. S. Gavrilov, Yuri G. Rubo, A. V. Kavokin, S. G. Tikhodeev, and G. Malpuech, “Polarization multistability of cavity polaritons,” Phys. Rev. Lett.98(23), 236401 (2007). [CrossRef] [PubMed]
  33. T. K. Paraïso, M. Wouters, Y. Léger, F. Morier-Genoud, and B. Deveaud-Plédran, “Multistability of a coherent spin ensemble in a semiconductor microcavity,” Nature Mater.9, 655–660 (2010). [CrossRef]
  34. D. Bajoni, E. Semenova, A. Lematre, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical bistability in a GaAs-based polariton diode,” Phys. Rev. Lett.101(26), 266402 (2008). [CrossRef] [PubMed]
  35. T. C. H. Liew, A. V. Kavokin, and I. A. Shelykh, “Optical circuits based on polariton neurons in semiconductor microcavities,” Phys. Rev. Lett.100(11), 116401 (2008). [PubMed]
  36. A. Amo, T. H. C. Liew, C. Adrados, R. Houdre, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton-polariton spin switches,” Nature Photon.4, 361–366 (2010). [CrossRef]
  37. D. Sarkar, S. S. Gavrilov, M. Sich, J. H. Quilter, R. A. Bradley, N. A. Gippius, K. Guda, V. D. Kulakovskii, M. S. Skolnick, and D. N. Krizhanovskii, “Polarization bistability and resultant spin rings in semiconductor microcavities,” Phys. Rev. Lett.105(21), 216402 (2010). [CrossRef]
  38. C. Adrados, A. Amo, T. C. H. Liew, R. Hivet, R. Houdr, E. Giacobino, A. V. Kavokin, and A. Bramati, “Spin rings in bistable planar semiconductor microcavities,” Phys. Rev. Lett.105(21), 216403 (2010). [CrossRef]
  39. T. C. H. Liew, A. V. Kavokin, and I. A. Shelykh, “Optical circuits based on polariton neurons in semiconductor microcavities,” Phys. Rev. Lett.101(1), 016402 (2008). [CrossRef] [PubMed]
  40. T. C. H. Liew, A. V. Kavokin, T. Ostatnický, M. Kaliteevski, I. A. Shelykh, and R. A. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B82(3), 033302 (2010). [CrossRef]
  41. I. G. Savenko, I. A. Shelykh, and M. A. Kaliteevski, “Nonlinear terahertz emission in semiconductor microcavities,” Phys. Rev. Lett.107(2), 027401 (2011). [CrossRef] [PubMed]
  42. F. Tassone and Y. Yamamoto, “Exciton-exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons,” Phys. Rev. B59(16), 10830–10842 (1999). [CrossRef]
  43. I. A. Shelykh, A. V. Kavokin, Yuri G. Rubo, T. C. H. Liew, and G. Malpuech, “Polariton polarization-sensitive phenomena in planar semiconductor microcavities”, Semicond. Sci. Technol.25(1), 013001 (2010). [CrossRef]
  44. A. Verger, C. Ciuti, and I. Carusotto, “Polariton quantum blockade in a photonic dot,” Phys. Rev. B73(19), 193306 (2006). [CrossRef]
  45. B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Generation of entangled photon holes using quantum interference,” Phys. Rev. A74(4), 010303()R (2006).
  46. X. L. Yang, S. H. Guo, F. T. Chan, K. W. Wong, and W. Y. Ching, “Analytic solution of a two-dimensional hydrogen atom. I. Nonrelativistic theory,” Phys.Rev. A43(3), 1186–1196 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited