OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15195–15204

The depolarization–attenuated backscatter relationship for dust plumes

Tian Zhou, Jianping Huang, Zhongwei Huang, Jingjing Liu, Wencai Wang, and Lei Lin  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15195-15204 (2013)
http://dx.doi.org/10.1364/OE.21.015195


View Full Text Article

Enhanced HTML    Acrobat PDF (3026 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study identified the relationship between the layer-integrated attenuated backscatter coefficient and layer-integrated depolarization ratio of dust plumes and compared it with that of cloud, using CALIPSO LIDAR measurements. The histogram distribution of the integrated color ratio for dust and cloud was also examined. On the basis of the layer-integrated attenuated backscatter coefficient and layer-integrated depolarization ratio relation, a simple method of detecting dust plumes was developed. A case study of dust identification over the Taklimakan Desert was conducted and compared with the current CALIPSO products. The result shows that the proposed method can significantly improve the classification of cloud and dust plumes and can supplement the current space-borne LIDAR discrimination approach, especially over dust source regions. In addition, The zonal and meridional mean occurrence derived by the proposed method and the CALIPSO’s method were compared for Asian dust over East Asia region (30°N −45°N, 80°E −180°E) using the night measurements of CALIPSO from March to May, 2007. The comparison showed that the dust occurrence obtained from the proposed method is larger than that of CALIPSO’s method. The dust could be found up to around 6-8 km (Above Sea Level, ASL) near the Taklimakan desert region, and maximum occurrence is over 80%. The transport altitude remained at 3km-7km (ASL) as the dust was transported across the Pacific Ocean.

© 2013 OSA

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.3640) Atmospheric and oceanic optics : Lidar
(010.1350) Atmospheric and oceanic optics : Backscattering
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: April 9, 2013
Revised Manuscript: May 27, 2013
Manuscript Accepted: June 5, 2013
Published: June 18, 2013

Citation
Tian Zhou, Jianping Huang, Zhongwei Huang, Jingjing Liu, Wencai Wang, and Lei Lin, "The depolarization–attenuated backscatter relationship for dust plumes," Opt. Express 21, 15195-15204 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-15195


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Twomey, M. Piepgrass, and T. L. Wolfe, “An assessment of the impact of pollution on global cloud albedo,” Tellus36B(5), 356–366 (1984). [CrossRef]
  2. A. Slingo, T. P. Ackerman, R. P. Allan, E. I. Kassianov, S. A. McFarlane, G. J. Robinson, J. C. Barnard, M. A. Miller, J. E. Harries, J. E. Russell, and S. Dewitte, “Observations of the impact of a major Saharan dust storm on the atmospheric radiation balance,” Geophys. Res. Lett.33(24), L24817 (2006), doi:. [CrossRef]
  3. J. Huang, B. Lin, P. Minnis, T. Wang, X. Wang, Y. Hu, Y. Yi, and K. Ayers, “Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over east Asia,” Geophys. Res. Lett.33(19), L19802 (2006a), doi:. [CrossRef]
  4. J. Huang, Q. Fu, J. Su, Q. Tang, P. Minnis, Y. Hu, Y. Yi, and Q. Zhao, “Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints,” Atmos. Chem. Phys.9(12), 4011–4021 (2009). [CrossRef]
  5. Z. Huang, J. Huang, J. Bi, G. Wang, W. Wang, Q. Fu, Z. Li, S.-C. Tsay, and J. Shi, “Dust aerosol vertical structure measurements using three MPL lidar during 2008 China-U.S. joint dust field experiment,” J. Geophys. Res. 115, D00K 15, doi: (2010). [CrossRef]
  6. Z. Liu, A. Omar, M. Vaughan, J. Hair, C. Kittaka, Y. Hu, K. Powcell, C. Trepte, D. Winker, C. Hostetler, R. Ferrare, and R. Pierce, “CALIPSO lidar observations of the optical properties of Saharan dust: a case study of long-range transport,” J. Geophys. Res.113(D7), D07207 (2008), doi:. [CrossRef]
  7. J. M. Haywood, V. Ramaswamy, and B. J. Soden, “Tropospheric aerosol climate forcing in clear-sky satellite observations over the oceans,” Science283(5406), 1299–1303 (1999). [CrossRef] [PubMed]
  8. A. Higurashi and T. Nakajima, “Detection of aerosol types over the east China sea near Japan from four-channel satellite data,” Geophys. Res. Lett.29(17), 1836 (2002), doi:. [CrossRef]
  9. T. Takemura, I. Uno, T. Nakajima, A. Higurashi, and I. Sano, “Modeling study of long-range transport of Asian dust and anthropogenic aerosol from east Asia,” Geophys. Res. Lett.29(24), 2158 (2002), doi:. [CrossRef]
  10. J. Huang, P. Minnis, B. Chen, Z. Huang, Z. Liu, Q. Zhao, Y. Yi, and J. K. Ayers, “Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX,” J. Geophys. Res.113(D23), D23212 (2008). [CrossRef]
  11. I. Uno, K. Eguchi, K. Yumimoto, T. Takemura, A. Shimizu, M. Uematsu, Z. Liu, Z. Wang, Y. Hara, and N. Sugimoto, “Asian dust transported one full circuit around the globe,” Nature, doi:. [CrossRef]
  12. J. Huang, P. Minnis, Y. Yi, Q. Tang, X. Wang, Y. Hu, Z. Liu, K. Ayers, C. Trepte, and D. Winker, “Summer dust aerosols detected from CALIPSO over the Tibetan Plateau,” Geophys. Res. Lett.34(18), L18805 (2007), doi:. [CrossRef]
  13. Z. Liu, D. Liu, J. Huang, M. Vaughan, I. Uno, N. Sugimoto, C. Kittaka, C. Trepte, Z. Wang, C. Hostetler, and D. Winker, “Airborne dust distribution over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations,” Atmos. Chem. Phys.8(16), 5045–5060 (2008). [CrossRef]
  14. K. Wang, Y. Zhang, A. Nenes, and C. Fountoukis, “Implementation of dust emission and chemistry into the Community Multiscale Air Quality modeling system and initial application to an Asian dust storm episode,” Atmos. Chem. Phys.12(21), 10209–10237 (2012). [CrossRef]
  15. N. Sugimoto, I. Uno, M. Nishikawa, A. Shimizu, I. Matsui, X. Dong, Y. Chen, and H. Quan, “Record heavy Asian dust in Beijing in 2002: observations and model analysis of recent events,” Geophys. Res. Lett.30(12), 1640 (2003), doi:. [CrossRef]
  16. N. Sugimoto, Z. Huang, T. Nishizawa, I. Matsui, and B. Tatarov, “Fluorescence from atmospheric aerosols observed with a multi-channel lidar spectrometer,” Opt. Express20(19), 20800–20807 (2012). [CrossRef] [PubMed]
  17. N. Sugimoto, Y. Hara, A. Shimizu, T. Nishizawa, I. Matsui, and M. Nishikawa, “Analysis of dust events in 2008 and 2009 using the lidar network, surface observations and the GFORS model,” Asia-Pacific J. Atmos. Sci.49(1), 27–39 (2013).
  18. K. Sassen, P. J. DeMott, J. M. Prospero, and M. R. Poellot, “Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results,” Geophys. Res. Lett.30(12), 1633 (2003), doi:. [CrossRef]
  19. J. Huang, P. Minnis, B. Lin, T. Wang, Y. Yi, Y. Hu, S. Sun-Mack, and K. Ayers, “Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES,” Geophys. Res. Lett.33(6), L06824 (2006b), doi:. [CrossRef]
  20. J. Su, J. Huang, Q. Fu, P. Minnis, J. Ge, and J. Bi, “Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu-Liou radiative model and CERES measurements,” Atmos. Chem. Phys.8(10), 2763–2771 (2008). [CrossRef]
  21. W. Wang, J. Huang, P. Minnis, Y. Hu, J. Li, Z. Huang, J. K. Ayers, and T. Wang, “Dusty cloud properties and radiative forcing over dust source and downwind regions derived from A-Train data during the Pacific dust experiment,” J. Geophys. Res.115, D00H35 (2010), doi:. [CrossRef]
  22. M. S. Jphnson, N. Meskhidz, V. P. Kiliyanpilakkil, and S. Gasso, “Understanding the transport of Patagonian dust and its influence on marine biological activity in the South Atlantic Ocean,” Atmos. Chem. Phys.11(6), 2487–2502 (2011). [CrossRef]
  23. M. Schulz, J. M. Prospero, A. R. Baker, F. Dentener, L. Ickes, P. S. Liss, N. M. Mahowald, S. Nickovic, C. P. García-Pando, S. Rodríguez, M. Sarin, I. Tegen, and R. A. Duce, “Atmospheric transport and deposition of mineral dust to the ocean: implications for research needs,” Environ. Sci. Technol.46(19), 10390–10404 (2012). [CrossRef] [PubMed]
  24. D. M. Winker, W. H. Hunt, and M. J. McGill, “Initial performance assessment of CALIOP,” Geophys. Res. Lett.34(19), L19803 (2007), doi:. [CrossRef]
  25. D. Liu, Z. Wang, Z. Liu, D. Winker, and C. Trepte, “A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements,” J. Geophys. Res.113(D16), D16214 (2008), doi:. [CrossRef]
  26. A. Omar, Z. Liu, M. Vaughan, Y. Hu, S. Ismail, K. Powell, D. Winker, C. Trepte, and B. E. Anderson, “Extinction-to-backscatter ratios of Saharan dust layers derived from in situ measurements and CALIPSO overflights during NAMMA,” J. Geophys. Res.115(D24), D24217 (2010). [CrossRef]
  27. Z. Liu, D. Winker, A. Omar, M. Vaughan, C. Trepte, Y. Hu, K. Powell, W. Sun, and B. Lin, “Effective lidar ratios of dense dust layers over North Africa derived from the CALIOP measurements,” J. Quant. Spectrosc. Radiat. Transf.112(2), 204–213 (2011). [CrossRef]
  28. Y. Hu, Z. Liu, D. Winker, M. Vaughan, V. Noel, L. Bissonnette, G. Roy, and M. McGill, “Simple relation between lidar multiple scattering and depolarization for water clouds,” Opt. Lett.31(12), 1809–1811 (2006a). [CrossRef] [PubMed]
  29. Y. Hu, M. A. Vaughan, D. M. Winker, Z. Liu, and V. Noel, “A simple multiple scattering-depolarization relation of water clouds and its potential applications,” Proceedings of 23nd International Laser Radar Conference, Nara Japan, 19–22 (2006b).
  30. Y. Hu, M. Vaughan, Z. Liu, B. Lin, P. Yang, D. Flittner, B. Hunt, R. Kuehn, J. Huang, D. Wu, S. Rodier, K. Powell, C. Trepte, and D. Winker, “The depolarization - attenuated backscatter relation: CALIPSO lidar measurements vs. theory,” Opt. Express15(9), 5327–5332 (2007). [CrossRef] [PubMed]
  31. H. M. Cho, P. Yang, G. W. Kattawar, S. L. Nasiri, Y. Hu, P. Minnis, C. Trepte, and D. Winker, “Depolarization ratio and attenuated backscatter for nine cloud types: analyses based on collocated CALIPSO lidar and MODIS measurements,” Opt. Express16(6), 3931–3948 (2008). [CrossRef] [PubMed]
  32. D. M. Winker, J. Pelon, J. A. Coakiey, Jr., S. A. Ackerman, R. J. Charlson, P. R. Colarco, P. Flamant, Q. Fu, R. M. Hoff, C. Kittaka, T. L. Kubar, H. Le Treut, M. P. Mccormick, G. Megie, L. Poole, K. Powell, C. Trepte, M. A. Vaughan, and B. A. Wielicki, “The CALIPSO MISSION: a global 3D view of aerosols and clouds,” Bull. Amer. Meteor. Soc. doi: 10.1175/2010BAMS3009 (2010).
  33. D. M. Winker, M. A. Vaughan, A. Omar, Y. X. Hu, and K. A. Powell, “Overview of the CALIPSO mission and CALIOP data processing algorithms,” J. Atmos. Ocean. Techn. 26(11), 2310, doi: (2009). [CrossRef]
  34. L. Adhikari, Z. Wang, and M. Deng, “Seasonal variations of Antarctic clouds observed by CloudSat and CALIPSO satellite,” J. Geophys. Res.117(D4), D04202 (2012), doi:. [CrossRef]
  35. M. A. Vaughan, D. M. Winker, and K. A. Powell, Part 2: Feature Detection and Layer Properties Algorithms (CALIOP Algorithm Theoretical Basis Document, 2005).
  36. U. Wandinger, M. Tesche, P. Seifert, A. Ansmann, D. Muller, and D. Althausen, “Size matters: influence of multiple scattering on CALIPSO light-extinction profiling in desert dust,” Geophys. Res. Lett.37(10), L10801 (2010), doi:. [CrossRef]
  37. W. Yang, A. Marshak, T. Varnai, O. V. Kalashnikova, and A. B. Kostinski, “CALIPSO observations of transatlantic dust: vertical stratification and effect of clouds,” Atmos. Chem. Phys.12(23), 11339–11354 (2012). [CrossRef]
  38. M. Vaughan, S. Young, D. Winker, K. Powell, A. Omar, Z. Liu, Y. Hu, and C. Hostetler, “Fully automated analysis of space-based lidar data: an overview of the CALIPSO retrieval algorithms and data products,” SPIE Int. Soc. Opt. Eng.5575, 16–30 (2004).
  39. Z. Liu, M. Vaughan, D. Winker, C. Kittaka, B. Getzwich, R. Kuehn, A. Omar, K. Powell, C. Trepte, and C. Hostetler, “The CALIPSO lidar cloud and aerosol discrimination: vertion 2 algorithm and initial assessment of performance,” J. Atmos. Ocean. Technol.26(7), 1198–1213 (2009). [CrossRef]
  40. G. Pappalardo, U. Wandinger, L. Mona, A. Hiebsch, I. Mattis, A. Amodeo, A. Ansmann, P. Seifert, H. Linne, A. Apituley, L. A. Arboledas, D. Balis, A. Chailovsky, G. D’Amico, F. D. Tomasi, V. Freudenthaler, E. Giannakaki, A. Giunta, I. Grigorov, M. Iarlori, F. Madonna, R. E. Mamouri, L. Nasti, A. Papayannis, A. Pietruczuk, M. Pujadas, V. Rizi, F. Rocadenbosch, F. Russo, F. Schnell, N. Spinelli, X. Wang, and M. Wiegner, “EARLINET correlative measurements for CALIPSO: First intercomparison results,” J. Geophys. Res.115, D00H19 (2010), doi:. [CrossRef]
  41. B. Chen, J. Huang, P. Minnis, Y. Hu, Y. Yi, Z. Liu, D. Zhang, and X. Wang, “Detection of dust aerosol by combining CALIPSO active lidar and passive IIR measurements,” Atmos. Chem. Phys.10(9), 4241–4251 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited