OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15205–15212

Tunable subwavelength hot spot of dipole nanostructure based on VO2 phase transition

Jun-Bum Park, Il-Min Lee, Seung-Yeol Lee, Kyuho Kim, Dawoon Choi, Eui Young Song, and Byoungho Lee  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 15205-15212 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2396 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel approach to generate and tune a hot spot in a dipole nanostructure of vanadium dioxide (VO2) laid on a gold (Au) substrate. By inducing a phase transition of the VO2, the spatial and spectral distributions of the hot spot generated in the feed gap of the dipole can be tuned. Our numerical simulation based on a finite-element method shows a strong intensity enhancement difference and tunability near the wavelength of 678 nm, where the hot spot shows 172-fold intensity enhancement when VO2 is in the semiconductor phase. The physical mechanisms of forming the hot spots at the two-different phases are discussed. Based on our analysis, the effects of geometric parameters in our dipole structure are investigated with an aim of enhancing the intensity and the tunability. We hope that the proposed nanostructure opens up a practical approach for the tunable near-field nano-photonic devices.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: April 15, 2013
Revised Manuscript: May 25, 2013
Manuscript Accepted: June 11, 2013
Published: June 18, 2013

Jun-Bum Park, Il-Min Lee, Seung-Yeol Lee, Kyuho Kim, Dawoon Choi, Eui Young Song, and Byoungho Lee, "Tunable subwavelength hot spot of dipole nanostructure based on VO2 phase transition," Opt. Express 21, 15205-15212 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Rather, Surface Plasmons (Springer-Verlag, Berlin, 1988).
  2. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express16(12), 9144–9154 (2008). [CrossRef] [PubMed]
  3. B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt.57(16), 1479–1497 (2010). [CrossRef]
  4. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009). [CrossRef]
  5. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics3(4), 220–224 (2009). [CrossRef]
  6. H. Kim, J. Park, and B. Lee, “Tunable directional beaming from subwavelength metal slits with metal-dielectric composite surface gratings,” Opt. Lett.34(17), 2569–2571 (2009). [CrossRef] [PubMed]
  7. E. Cubukcu, E. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett.89(9), 093120 (2006). [CrossRef]
  8. S.-Y. Lee, W. Lee, Y. Lee, J.-Y. Won, J. Kim, I.-M. Lee, and B. Lee, “Phase-controlled directional switching of surface plasmon polaritons via beam interference,” Laser Photon. Rev.7(2), 273–279 (2013). [CrossRef]
  9. A. Andryieuski, R. Malureanu, G. Biagi, T. Holmgaard, and A. Lavrinenko, “Compact dipole nanoantenna coupler to plasmonic slot waveguide,” Opt. Lett.37(6), 1124–1126 (2012). [CrossRef] [PubMed]
  10. H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express16(11), 7756–7766 (2008). [CrossRef] [PubMed]
  11. P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys.75(2), 024402 (2012). [CrossRef] [PubMed]
  12. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006). [CrossRef] [PubMed]
  13. E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett.88(15), 153110 (2006). [CrossRef]
  14. Z. Yang, C. Ko, and S. Ramanathan, “Oxide electronics utilizing ultrafast metal-insulator transitions,” Annu. Rev. Mater. Res.41(1), 337–367 (2011). [CrossRef]
  15. A. Cavalleri, T. Dekorsy, H. Chong, J. Kieffer, and R. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B70(16), 161102 (2004). [CrossRef]
  16. R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express18(11), 11192–11201 (2010). [CrossRef] [PubMed]
  17. T. Driscoll, H.-T. Kim, B.-G. Chae, M. Di Ventra, and D. N. Basov, “Phase-transition driven memristive system,” Appl. Phys. Lett.95(4), 043503 (2009). [CrossRef]
  18. B.-J. Kim, Y. W. Lee, B.-G. Chae, S. J. Yun, S.-Y. Oh, H.-T. Kim, and Y.-S. Lim, “Temperature dependence of the first-order metal-insulator transition in VO2 and programmable critical temperature sensor,” Appl. Phys. Lett.90(2), 023515 (2007). [CrossRef]
  19. D. Ruzmetov, G. Gopalakrishnan, C. Ko, V. Narayanamurti, and S. Ramanathan, “Three-terminal field effect devices utilizing thin film vanadium oxide as the channel layer,” J. Appl. Phys.107(11), 114516 (2010). [CrossRef]
  20. G. Seo, B.-J. Kim, H.-T. Kim, and Y. W. Lee, “Photo-assisted electrical oscillation in two-terminal device based on vanadium dioxide thin film,” J. Lightwave Technol.30(16), 2718–2724 (2012). [CrossRef]
  21. M. Nakajima, N. Takubo, Z. Hiroi, Y. Ueda, and T. Suemoto, “Photoinduced metallic state in VO2 proved by the terahertz pump-probe spectroscopy,” Appl. Phys. Lett.92(1), 011907 (2008). [CrossRef]
  22. S. Lysenko, A. J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, and H. Liu, “Light-induced ultrafast phase transitions in VO2 thin film,” Appl. Surf. Sci.252(15), 5512–5515 (2006). [CrossRef]
  23. M. F. Becker, B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor-metal phase transition in VO2,” Appl. Phys. Lett.65(12), 1507 (1994). [CrossRef]
  24. A. Cavalleri, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, B. S. Mun, H. A. Padmore, and R. W. Schoenlein, “Picosecond soft X-ray absorption measurement of the photo-induced insulator-to-metal transition in VO2,” Phys. Rev. B69(15), 153106 (2004). [CrossRef]
  25. G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter12(41), 8837–8845 (2000). [CrossRef]
  26. K. Appavoo and R. F. Haglund., “Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial,” Nano Lett.11(3), 1025–1031 (2011). [CrossRef] [PubMed]
  27. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express17(20), 18330–18339 (2009). [CrossRef] [PubMed]
  28. J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett.88(13), 133115 (2006). [CrossRef]
  29. H. Gai, J. Wang, and Q. Tian, “Modified Debye model parameters of metals applicable for broadband calculations,” Appl. Opt.46(12), 2229–2233 (2007). [CrossRef] [PubMed]
  30. M. J. Dicken, “Active oxide nanophotonics,” Ph.D. Thesis, California Institute of Technology (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited