OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15213–15229

Capacity of MIMO free space optical communications using multiple partially coherent beams propagation through non-Kolmogorov strong turbulence

Peng Deng, Mohsen Kavehrad, Zhiwen Liu, Zhou Zhou, and XiuHua Yuan  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15213-15229 (2013)
http://dx.doi.org/10.1364/OE.21.015213


View Full Text Article

Enhanced HTML    Acrobat PDF (1553 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the average capacity performance for multiple-input multiple-output (MIMO) free-space optical (FSO) communication systems using multiple partially coherent beams propagating through non-Kolmogorov strong turbulence, assuming equal gain combining diversity configuration and the sum of multiple gamma-gamma random variables for multiple independent partially coherent beams. The closed-form expressions of scintillation and average capacity are derived and then used to analyze the dependence on the number of independent diversity branches, power law α, refractive-index structure parameter, propagation distance and spatial coherence length of source beams. Obtained results show that, the average capacity increases more significantly with the increase in the rank of MIMO channel matrix compared with the diversity order. The effect of the diversity order on the average capacity is independent of the power law, turbulence strength parameter and spatial coherence length, whereas these effects on average capacity are gradually mitigated as the diversity order increases. The average capacity increases and saturates with the decreasing spatial coherence length, at rates depending on the diversity order, power law and turbulence strength. There exist optimal values of the spatial coherence length and diversity configuration for maximizing the average capacity of MIMO FSO links over a variety of atmospheric turbulence conditions.

© 2013 OSA

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(060.4510) Fiber optics and optical communications : Optical communications
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: April 19, 2013
Revised Manuscript: June 8, 2013
Manuscript Accepted: June 8, 2013
Published: June 18, 2013

Citation
Peng Deng, Mohsen Kavehrad, Zhiwen Liu, Zhou Zhou, and XiuHua Yuan, "Capacity of MIMO free space optical communications using multiple partially coherent beams propagation through non-Kolmogorov strong turbulence," Opt. Express 21, 15213-15229 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-15213


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wirel. Comm.6(8), 2813–2819 (2007). [CrossRef]
  2. V. W. S. Chan, “Free-Space Optical Communications,” J. Lightwave Technol.24(12), 4750–4762 (2006). [CrossRef]
  3. J. A. Tellez and J. D. Schmidt, “Multibeam scintillation cumulative distribution function,” Opt. Lett.36(2), 286–288 (2011). [CrossRef] [PubMed]
  4. H. Guo, B. Luo, Y. Ren, S. Zhao, and A. Dang, “Influence of beam wander on uplink of ground-to-satellite laser communication and optimization for transmitter beam radius,” Opt. Lett.35(12), 1977–1979 (2010). [CrossRef] [PubMed]
  5. A. Tunick, “Optical turbulence parameters characterized via optical measurements over a 2.33 km free-space laser path,” Opt. Express16(19), 14645–14654 (2008). [CrossRef] [PubMed]
  6. A. Zilberman, E. Golbraikh, and N. S. Kopeika, “Propagation of electromagnetic waves in Kolmogorov and non-Kolmogorov atmospheric turbulence: three-layer altitude model,” Appl. Opt.47(34), 6385–6391 (2008). [CrossRef] [PubMed]
  7. E. Shchepakina and O. Korotkova, “Second-order statistics of stochastic electromagnetic beams propagating through non-Kolmogorov turbulence,” Opt. Express18(10), 10650–10658 (2010). [CrossRef] [PubMed]
  8. J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A19(9), 1794–1802 (2002). [CrossRef] [PubMed]
  9. O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng.43(2), 330–341 (2004). [CrossRef]
  10. A. Belmonte and J. M. Kahn, “Capacity of coherent free-space optical links using diversity-combining techniques,” Opt. Express17(15), 12601–12611 (2009). [CrossRef] [PubMed]
  11. E. Bayaki, R. Schober, and R. K. Mallik, “Performance Analysis of MIMO Free-Space Optical Systems in Gamma-Gamma Fading,” IEEE Trans. Commun.57(11), 3415–3424 (2009). [CrossRef]
  12. Y. Baykal, H. T. Eyyuboğlu, and Y. J. Cai, “Scintillations of partially coherent multiple Gaussian beams in turbulence,” Appl. Opt.48(10), 1943–1954 (2009). [CrossRef] [PubMed]
  13. J. Cang and X. Liu, “Average capacity of free-space optical systems for a partially coherent beam propagating through non-Kolmogorov turbulence,” Opt. Lett.36(17), 3335–3337 (2011). [CrossRef] [PubMed]
  14. G. P. Berman, A. R. Bishop, B. M. Chernobrod, V. N. Gorshkov, D. C. Lizon, D. I. Moody, D. C. Nguyen, and S. V. Torous, “Reduction of laser intensity scintillations in turbulent atmospheres using time averaging of a partially coherent beam,” J. Phys. B42(22), 225403 (2009). [CrossRef]
  15. D. K. Borah and D. G. Voelz, “Spatially partially coherent beam parameter optimization for free space optical communications,” Opt. Express18(20), 20746–20758 (2010). [CrossRef] [PubMed]
  16. A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, “Outage performance of MIMO FSO links over strong turbulence and misalignment fading channels,” Opt. Express19(14), 13480–13496 (2011). [CrossRef] [PubMed]
  17. K. P. Peppas, F. Lazarakis, A. Alexandridis, and K. Dangakis, “Simple, accurate formula for the average bit error probability of multiple-input multiple-output free-space optical links over negative exponential turbulence channels,” Opt. Lett.37(15), 3243–3245 (2012). [CrossRef] [PubMed]
  18. X. Yi, Z. Liu, and P. Yue, “Formula for the average bit error rate of free-space optical systems with dual-branch equal-gain combining over gamma-gamma turbulence channels,” Opt. Lett.38(2), 208–210 (2013). [CrossRef] [PubMed]
  19. I. I. Kim, H. Hakakha, P. Adhikari, E. J. Korevaar, and A. K. Majumdar, “Scintillation reduction using multiple transmitters,” in Photonics West'97(International Society for Optics and Photonics, 1997), 102–113.
  20. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Optical Engineering Press, Bellingham, 2005).
  21. N. Letzepis, I. Holland, and W. Cowley, “The Gaussian free space optical MIMO channel with Q-ary pulse position modulation,” IEEE Trans. Wireless Commun.7(5), 1744–1753 (2008). [CrossRef]
  22. J. A. Anguita, M. A. Neifeld, and B. V. Vasic, “Spatial correlation and irradiance statistics in a multiple-beam terrestrial free-space optical communication link,” Appl. Opt.46(26), 6561–6571 (2007). [CrossRef] [PubMed]
  23. G. Yun and M. Kavehrad, “Spot-diffusing and fly-eye receivers for indoor infrared wireless communications,” in Proceedings of IEEE International Conference on Selected Topics in Wireless Communications(IEEE, 1992), 262–265. [CrossRef]
  24. Z. Hajjarian and M. Kavehrad, “Using MIMO Transmissions in Free Space Optical Communications in Presence of Clouds and Turbulence,” Proc. SPIE7199, 71990V, 71990V-12 (2009). [CrossRef]
  25. S. Jivkova and M. Kavehrad, “Transceiver design concept for cellular and multispot diffusing regimes of transmission,” Eurasip J Wirel Comm2005, 30–38 (2005).
  26. J. M. Kahn, R. You, P. Djahani, A. G. Weisbin, B. K. Teik, and A. Tang, “Imaging diversity receivers for high-speed infrared wireless communication,” IEEE Commun. Mag.36(12), 88–94 (1998). [CrossRef]
  27. M. Uysal, J. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE Trans. Wireless Commun5(6), 1229–1233 (2006). [CrossRef]
  28. M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng.40(8), 1554–1562 (2001). [CrossRef]
  29. P. Deng, X. Yuan, Y. Zeng, M. Zhao, and H. Luo, “Influence of wind speed on free space optical communication performance for Gaussian beam propagation through non kolmogorov strong turbulence,” J. Phys. Conf. Ser.276, 012056 (2011). [CrossRef]
  30. P. Deng, X. Yuan, and D. Huang, “Scintillation of a laser beam propagation through non-Kolmogorov strong turbulence,” Opt. Commun.285(6), 880–887 (2012). [CrossRef]
  31. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence,” Opt. Eng.47(2), 026003–026009 (2008). [CrossRef]
  32. N. D. Chatzidiamantis, G. K. Karagiannidis, and D. S. Michalopoulos, “On the distribution of the sum of gamma-gamma variates and application in MIMO optical wireless systems,” in IEEE Global Telecommunications Conference(IEEE, 2009), 1–6. [CrossRef]
  33. H. E. Nistazakis, E. A. Karagianni, A. D. Tsigopoulos, M. E. Fafalios, and G. S. Tombras, “Average Capacity of Optical Wireless Communication Systems Over Atmospheric Turbulence Channels,” J. Lightwave Technol.27(8), 974–979 (2009). [CrossRef]
  34. G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wirel. Pers. Commun.6(3), 311–335 (1998). [CrossRef]
  35. B. Holter, “On the capacity of the MIMO channel: A tutorial introduction,” in Proc. IEEE Norwegian Symposium on Signal Processing(IEEE, 2001), 167–172.
  36. O. Oyman, R. U. Nabar, H. Bolcskei, and A. J. Paulraj, “Tight lower bounds on the ergodic capacity of Rayleigh fading MIMO channels,” in IEEE Global Telecommunications Conference, GLOBECOM'02.(IEEE, 2002), 1172–1176. [CrossRef]
  37. T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley-interscience, New York, 2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited