OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15230–15236

Estimating the optimal sampling rate using wavelet transform: an application to optical turbulence

Gustavo Funes, Ángel Fernández, Darío G. Pérez, Luciano Zunino, and Eduardo Serrano  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15230-15236 (2013)
http://dx.doi.org/10.1364/OE.21.015230


View Full Text Article

Acrobat PDF (1090 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Sampling rate and frequency content determination for optical quantities related to light propagation through turbulence are paramount experimental topics. Some papers about estimating properties of the optical turbulence seem to use ad hoc assumptions to set the sampling frequency used; this chosen sampling rate is assumed good enough to perform a proper measurement. On the other hand, other authors estimate the optimal sampling rate via fast Fourier transform of data series associated to the experiment. When possible, with the help of analytical models, cut-off frequencies, or frequency content, can be determined; yet, these approaches require prior knowledge of the optical turbulence. The aim of this paper is to propose an alternative, practical, experimental method to estimate a proper sampling rate. By means of the discrete wavelet transform, this approach can prevent any loss of information and, at the same time, avoid oversampling. Moreover, it is independent of the statistical model imposed on the turbulence.

© 2013 OSA

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.7060) Atmospheric and oceanic optics : Turbulence
(010.7350) Atmospheric and oceanic optics : Wave-front sensing

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: May 2, 2013
Revised Manuscript: June 3, 2013
Manuscript Accepted: June 11, 2013
Published: June 18, 2013

Citation
Gustavo Funes, Ángel Fernández, Darío G. Pérez, Luciano Zunino, and Eduardo Serrano, "Estimating the optimal sampling rate using wavelet transform: an application to optical turbulence," Opt. Express 21, 15230-15236 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-15230


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. V. I. Tatarskĭ, Wave Propagation in a Turbulent Atmosphere(Nauka Press, Moscow, 1967).
  2. H. T. Yura, “Physical model for strong optical-amplitude fluctuations in a turbulent medium,” J. Opt. Soc. Am.64, 59–67 (1974). [CrossRef]
  3. A. Ishimaru, Wave Propagation and Scattering in Random Media(IEEE Press & Oxford University Press, 1997).
  4. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media(SPIE, 1998).
  5. R. L. Fante, “Mutual coherence function and frequency spectrum of a laser beam propagating through atmospheric turbulence,” J. Opt. Soc. Am.64, 592–598 (1974). [CrossRef]
  6. S. F. Clifford, “Temporal-frequency spectra for a spherical wave propagating through atmospheric turbulence,” J. Opt. Soc. Am.61, 1285–1292 (1971). [CrossRef]
  7. D. P. Greenwood, “Bandwidth specification for adaptive optics systems,” J. Opt. Soc. Am.67, 390–393 (1977). [CrossRef]
  8. G. A. Tyler, “Bandwidth considerations for tracking through turbulence,” J. Opt. Soc. Am. A11, 358–367 (1994). [CrossRef]
  9. L. R. Bissonnette, “Atmospheric scintillation of optical and infrared waves: a laboratory simulation,” Appl. Opt.16, 2242–2251 (1977). [CrossRef] [PubMed]
  10. A. Consortini, C. Innocenti, and G. Paoli, “Estimate method for outer scale of atmospheric turbulence,” Opt. Commun.214, 9–14 (2002). [CrossRef]
  11. V. P. Lukin and V. V. Pokasov, “Optical wave phase fluctuations,” Appl. Opt.20, 121–135 (1981). [CrossRef] [PubMed]
  12. N. Ben-Yosef and E. Goldner, “Sample size influence on optical scintillation analysis. Analytical treatment of the higher-order irradiance moments,” Appl. Opt.27, 2167–2171 (1988). [CrossRef] [PubMed]
  13. F. Martin, A. Tokovinin, A. Agabi, J. Borgnino, and A. Ziad, “G.S.M.: a Grating Scale Monitor for atmospheric turbulence measurements. I. The instrument and first results of angle of arrival measurements,” Astron. Astrophys. Sup.108, 173–180 (1994).
  14. F. S. Vetelino, B. Clare, K. Corbett, C. Young, K. Grant, and L. Andrews, “Characterizing the propagation path in moderate to strong optical turbulence,” Appl. Opt.45, 3534–3543 (2006). [CrossRef] [PubMed]
  15. H. T. Yura and D. A. Kozlowski, “Low Earth orbit satellite-to-ground optical scintillation: comparison of experimental observations and theoretical predictions,” Opt. Lett.36, 2507–2509 (2011). [CrossRef] [PubMed]
  16. J. A. Anguita and J. E. Cisternas, “Influence of turbulence strength on temporal correlation of scintillation,” Opt. Lett.36, 1725–1727 (2011). [CrossRef] [PubMed]
  17. L. Kral, I. Prochazka, and K. Hamal, “Optical signal path delay fluctuations caused by atmospheric turbulence,” Opt. Lett.30, 1767–1769 (2005). [CrossRef] [PubMed]
  18. L. P. Poggio, M. Furger, A. H. Prévôt, W. K. Graber, and E. L. Andreas, “Scintillometer Wind Measurements over Complex Terrain,” J. Atmos. Oceanic Technol.17, 17–26 (2000). [CrossRef]
  19. G. Potvin, D. Dion, and J. L. Forand, “Wind effects on scintillation decorrelation times,” Opt. Eng.44, 016001 (2005). [CrossRef]
  20. S. Mallat, A Wavelet Tour of Signal Processing(Academic Press, Elsevier, 2009).
  21. D. Percival and A. Walden, Wavelet Methods for Time Series Analysis, Cambridge Series In Statistical And Probabilistic Mathematics (Cambridge University Press, 2006).
  22. C. K. Chui, An Introduction to Wavelets(Academic Press, 1992).
  23. M. Farge, “Wavelet transforms and their applications to turbulence,” Annu. Rev. Fluid Mech.24, 395–457 (1992). [CrossRef]
  24. L. Hudgins, C. A. Friehe, and M. E. Mayer, “Wavelet transform and atmospheric turbulence,” Phys. Rev. Lett.71, 3279–3282 (1993). [CrossRef] [PubMed]
  25. D. G. Pérez, A. Fernandez, G. Funes, D. Gulich, and L. Zunino, “Retrieving atmospheric turbulence features from differential laser tracking motion data,” SPIE Proc.8535(2012). [CrossRef]
  26. O. Keskin, L. Jolissaint, and C. Bradley, “Hot-air optical turbulence generator for the testing of adaptive optics systems: principles and characterization”, Appl. Opt.45, 4888–4897 (2006). [CrossRef] [PubMed]
  27. S. Blanco, A. Figliola, R. Quian Quiroga, O. A. Rosso, and E. Serrano, “Time-frequency analysis of electroencephalogram series. III. Wavelet packets and information cost function,” Phys. Rev. E57, 932–940 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited