OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15259–15267

Formation of nanogratings in a transparent material with tunable ionization property by femtosecond laser irradiation

Fadhil A. Umran, Yang Liao, Mazin M. Elias, Koji Sugioka, Razvan Stoian, Guanghua Cheng, and Ya Cheng  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15259-15267 (2013)
http://dx.doi.org/10.1364/OE.21.015259


View Full Text Article

Enhanced HTML    Acrobat PDF (1189 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Irradiation inside some transparent materials such as fused silica can induce nanograting structures at the focal area. Here, we investigate experimentally how the nanograting formation can be influenced by tuning the ionization property of the transparent material, which is achieved by irradiation inside a porous glass immersed in water doped with NaCl at variable concentrations. Our results show that the doping of NaCl not only reduces the threshold fluence of optical breakdown, but also leads to nanograting structures with shorter periods. These effects may be attributed to the enhanced photoionization in water doped with NaCl.

© 2013 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.3440) Lasers and laser optics : Laser-induced breakdown
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Laser Microfabrication

History
Original Manuscript: May 22, 2013
Revised Manuscript: June 8, 2013
Manuscript Accepted: June 8, 2013
Published: June 18, 2013

Citation
Fadhil A. Umran, Yang Liao, Mazin M. Elias, Koji Sugioka, Razvan Stoian, Guanghua Cheng, and Ya Cheng, "Formation of nanogratings in a transparent material with tunable ionization property by femtosecond laser irradiation," Opt. Express 21, 15259-15267 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-15259


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  2. Y. Bellouard, A. Champion, B. Lenssen, M. Matteucci, A. Schaap, M. Beresna, C. Corbari, M. Gecevičius, P. Kazansky, O. Chappuis, M. Kral, R. Clavel, F. Barrot, J.-M. Breguet, Y. Mabillard, S. Bottinelli, M. Hopper, C. Hoenninger, E. Mottay, and J. Lopez, “The femtoprint project,” J. Laser Micro/Nanoeng.7(1), 1–10 (2012). [CrossRef]
  3. J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci.197, 891–895 (2002). [CrossRef]
  4. Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003). [CrossRef] [PubMed]
  5. Y. Shimotsuma, T. Asai, K. Miura, K. Hirao, and P. G. Kazansky, “Evolution of self-assembled nanostructure in glass,” J. Laser Micro/Nanoeng.7, 338–344 (2012).
  6. G. Miyaji, K. Zhang, J. Fujita, and K. Miyazaki, “Nanostructuring of silicon surface with femtosecond laser-induced near-field,” J. Laser Micro/Nanoeng.7(2), 198–201 (2012). [CrossRef]
  7. E. N. Glezer and E. Mazur, “Ultrafast-laser driven microexplosions in transparent materials,” Appl. Phys. Lett.71(7), 882–884 (1997). [CrossRef]
  8. Y. Yonezaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids351(10-11), 885–892 (2005). [CrossRef]
  9. F. Chen and J. R. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining”, Laser Photonics Rev. (2013) / DOI 10.1002/lpor.201300025
  10. G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express17(15), 12546–12554 (2009). [CrossRef] [PubMed]
  11. K. Sugioka and Y. Cheng, “Femtosecond laser processing for optofluidic fabrication,” Lab Chip12(19), 3576–3589 (2012). [CrossRef] [PubMed]
  12. Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip12(4), 746–749 (2012). [CrossRef] [PubMed]
  13. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev.2(1-2), 26–46 (2008). [CrossRef]
  14. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express17(12), 9515–9525 (2009). [CrossRef] [PubMed]
  15. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006). [CrossRef] [PubMed]
  16. S. Richter, M. Heinrich, S. Doring, A. Tünnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl.24(4), 042008 (2012). [CrossRef]
  17. Y. Liao, Y. L. Shen, L. L. Qiao, D. P. Chen, Y. Cheng, K. Sugioka, and K. Midorikawa, “Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes,” Opt. Lett.38(2), 187–189 (2013). [CrossRef] [PubMed]
  18. Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip13(8), 1626–1631 (2013). [CrossRef] [PubMed]
  19. I. V. Hertel, C. Hüglin, C. Nitsch, and C. P. Schulz, “Photoionization of Na(NH3)n and Na(H2O)n clusters: A step towards the liquid phase?” Phys. Rev. Lett.67(13), 1767–1770 (1991). [CrossRef] [PubMed]
  20. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96(16), 166101 (2006). [CrossRef] [PubMed]
  21. S. Richter, M. Heinrich, S. Doering, A. Tuennermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process.104(2), 503–507 (2011). [CrossRef]
  22. C. Mauclair, M. Zamfirescu, J. P. Colombier, G. Cheng, K. Mishchik, E. Audouard, and R. Stoian, “Control of ultrafast laser-induced bulk nanogratings in fused silica via pulse time envelopes,” Opt. Express20(12), 12997–13005 (2012). [CrossRef] [PubMed]
  23. P. G. Kazansky and Y. Shimotsuma, “Self-assembled sub-wavelength structures and form birefringence created by femtosecond laser writing in glass: properties and applications,” J. Ceram. Soc. Jpn.116(1358), 1052–1062 (2008). [CrossRef]
  24. M. Beresna, M. Gecevičus, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett.101(5), 053120 (2012). [CrossRef]
  25. S. Richter, F. Jia, M. Heinrich, S. Döring, U. Peschel, A. Tünnermann, and S. Nolte, “The role of self-trapped excitons and defects in the formation of nanogratings in fused silica,” Opt. Lett.37(4), 482–484 (2012). [CrossRef] [PubMed]
  26. F. Liang, R. Vallée, and S. L. Chin, “Mechanism of nanograting formation on the surface of fused silica,” Opt. Express20(4), 4389–4396 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited