OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15280–15286

Thermo-optic mode extinction modulator based on graphene plasmonic waveguide

Jin Tae Kim, Kwang Hyo Chung, and Choon-Gi Choi  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 15280-15286 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1298 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We developed a thermo-optic (TO) mode extinction modulator based on graphene plasmonic waveguide. For compact device design and fabrication, the graphene plasmonic waveguide and heating element are configured all-in-one. Thermally induced inhomogeneous refractive-index distribution of the polymer near the microribbon cut off the long-range surface plasmon polariton (LRSPP) stripe mode propagating along a graphene microribbon. Numerical modeling are conducted on the time-dependent temperature (and hence the refractive-index) distribution by resistive heating element inside the graphene TO modulator. Experimental results demonstrate 30 dB attenuation with 12 mW electrical power injection at a telecom wavelength and exhibit a good agreement with the thermal modeling.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides
(160.4236) Materials : Nanomaterials

ToC Category:
Integrated Optics

Original Manuscript: March 6, 2013
Revised Manuscript: May 24, 2013
Manuscript Accepted: June 11, 2013
Published: June 19, 2013

Jin Tae Kim, Kwang Hyo Chung, and Choon-Gi Choi, "Thermo-optic mode extinction modulator based on graphene plasmonic waveguide," Opt. Express 21, 15280-15286 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007). [CrossRef] [PubMed]
  2. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010). [CrossRef]
  3. T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics4(5), 297–301 (2010). [CrossRef]
  4. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474(7349), 64–67 (2011). [CrossRef] [PubMed]
  5. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011). [CrossRef]
  6. S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett.99(1), 016803 (2007). [CrossRef] [PubMed]
  7. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys.103(6), 064302 (2008). [CrossRef]
  8. M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80(24), 245435 (2009). [CrossRef]
  9. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1(3), 484–588 (2009). [CrossRef]
  10. J. T. Kim and S.-Y. Choi, “Graphene-based plasmonic waveguides for photonic integrated circuits,” Opt. Express19(24), 24557–24562 (2011). [CrossRef] [PubMed]
  11. J. T. Kim and C.-G. Choi, “Graphene-based polymer waveguide polarizer,” Opt. Express20(4), 3556–3562 (2012). [CrossRef] [PubMed]
  12. Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano6(5), 3677–3694 (2012). [CrossRef] [PubMed]
  13. J. T. Kim, J. Kim, H. Choi, C.-G. Choi, and S.-Y. Choi, “Graphene-based photonic devices for soft hybrid optoelectronic systems,” Nanotechnology23(34), 344005 (2012). [CrossRef] [PubMed]
  14. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics6(11), 749–758 (2012). [CrossRef]
  15. I. Breukelaar, R. Charbonneau, and P. Berini, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys.100(4), 043104 (2006). [CrossRef]
  16. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85(24), 5833–5835 (2004). [CrossRef]
  17. G. Gagnon, N. Lahoud, G. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” J. Lightwave Technol.24(11), 4391–4402 (2006). [CrossRef]
  18. J. Kang, H. Kim, K. S. Kim, S.-K. Lee, S. Bae, J.-H. Ahn, Y.-J. Kim, J.-B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett.11(12), 5154–5158 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited