OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15323–15334

Femtosecond laser pulses for fast 3-D surface profilometry of microelectronic step-structures

Woo-Deok Joo, Seungman Kim, Jiyong Park, Keunwoo Lee, Joohyung Lee, Seungchul Kim, Young-Jin Kim, and Seung-Woo Kim  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15323-15334 (2013)
http://dx.doi.org/10.1364/OE.21.015323


View Full Text Article

Acrobat PDF (3324 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fast, precise 3-D measurement of discontinuous step-structures fabricated on microelectronic products is essential for quality assurance of semiconductor chips, flat panel displays, and photovoltaic cells. Optical surface profilers of low-coherence interferometry have long been used for the purpose, but the vertical scanning range and speed are limited by the micro-actuators available today. Besides, the lateral field-of-view extendable for a single measurement is restricted by the low spatial coherence of broadband light sources. Here, we cope with the limitations of the conventional low-coherence interferometer by exploiting unique characteristics of femtosecond laser pulses, i.e., low temporal but high spatial coherence. By scanning the pulse repetition rate with direct reference to the Rb atomic clock, step heights of ~69.6 μm are determined with a repeatability of 10.3 nm. The spatial coherence of femtosecond pulses provides a large field-of-view with superior visibility, allowing for a high volume measurement rate of ~24,000 mm3/s.

© 2013 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.7090) Lasers and laser optics : Ultrafast lasers

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: May 2, 2013
Revised Manuscript: June 12, 2013
Manuscript Accepted: June 13, 2013
Published: June 19, 2013

Citation
Woo-Deok Joo, Seungman Kim, Jiyong Park, Keunwoo Lee, Joohyung Lee, Seungchul Kim, Young-Jin Kim, and Seung-Woo Kim, "Femtosecond laser pulses for fast 3-D surface profilometry of microelectronic step-structures," Opt. Express 21, 15323-15334 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-15323


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. F. Al-Sarawi, D. Abbott, and P. A. Franzon, “A review of 3-D packaging technology,” IEEE Trans. Compon. Packag. Manuf. Tech.21(1), 2–14 (1998). [CrossRef]
  2. A. W. Topol, D. C. La Tulipe, L. Shi, D. J. Frank, K. Bernstein, S. E. Steen, A. Kumar, G. U. Singco, A. M. Young, K. W. Guarini, and M. Ieong, “Three-dimensional integrated circuits,” IBM J. Res. Develop.50(4.5), 491–506 (2006). [CrossRef]
  3. R. S. Patti, “Three-dimensional integrated circuits and the future of system-on-chip designs,” Proc. IEEE94(6), 1214–1224 (2006). [CrossRef]
  4. N. Khan, V. S. Rao, S. Lim, H. S. We, V. Lee, X. Zhang, E. B. Liao, R. Nagarajan, T. C. Chai, V. Kripesh, and J. H. Lau, “Development of 3D silicon module with TSV for system in packaging,” IEEE Trans. Compon. Packag. Manuf. Tech.33(1), 3–9 (2010). [CrossRef]
  5. J. C. Wyant, “Interferometric optical metrology: basic principles and new systems,” Laser Focus18, 65–71 (1982).
  6. K. V. Creath, “Phase-measurement interferometry techniques,” Prog. Opt.26, 349–393 (1988). [CrossRef]
  7. P. de Groot, “Measurement of transparent plates with wavelength-tuned phase-shifting interferometry,” Appl. Opt.39(16), 2658–2663 (2000). [CrossRef] [PubMed]
  8. P. J. Caber, “Interferometric profiler for rough surfaces,” Appl. Opt.32(19), 3438–3441 (1993). [CrossRef] [PubMed]
  9. L. Deck and P. de Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt.33(31), 7334–7338 (1994). [CrossRef] [PubMed]
  10. S.-W. Kim and G.-H. Kim, “Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry,” Appl. Opt.38(28), 5968–5973 (1999). [CrossRef] [PubMed]
  11. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  12. M. A. Choma, M. V. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  13. J. Schwider, “White-light Fizeau interferometer,” Appl. Opt.36(7), 1433–1437 (1997). [CrossRef] [PubMed]
  14. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288(5466), 635–639 (2000). [CrossRef] [PubMed]
  15. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett.85(11), 2264–2267 (2000). [CrossRef] [PubMed]
  16. Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002). [CrossRef] [PubMed]
  17. S.-W. Kim, “Metrology: Combs rule,” Nat. Photonics3(6), 313–314 (2009). [CrossRef]
  18. J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett.29(10), 1153–1155 (2004). [CrossRef] [PubMed]
  19. S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with Thousands of lasers for absolute distance measurement,” Phys. Rev. Lett.108(18), 183901 (2012). [CrossRef] [PubMed]
  20. T. R. Schibli, K. Minoshima, Y. Bitou, F. L. Hong, H. Inaba, A. Onae, and H. Matsumoto, “Displacement metrology with sub-pm resolution in air based on a fs-comb wavelength synthesizer,” Opt. Express14(13), 5984–5993 (2006). [CrossRef] [PubMed]
  21. N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, and R. Holzwarth, “Frequency-comb-referenced two-wavelength source for absolute distance measurement,” Opt. Lett.31(21), 3101–3103 (2006). [CrossRef] [PubMed]
  22. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics3(6), 351–356 (2009). [CrossRef]
  23. J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics4(10), 716–720 (2010). [CrossRef]
  24. J. S. Oh and S.-W. Kim, “Femtosecond laser pulses for surface-profile metrology,” Opt. Lett.30(19), 2650–2652 (2005). [CrossRef] [PubMed]
  25. D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, “Analysis of the temporal coherence function of a femtosecond optical frequency comb,” Opt. Express17(9), 7011–7018 (2009). [CrossRef] [PubMed]
  26. J. Jin, J. W. Kim, C.-S. Kang, J.-A. Kim, and S. Lee, “Precision depth measurement of through silicon vias (TSVs) on 3D semiconductor packaging process,” Opt. Express20(5), 5011–5016 (2012). [CrossRef] [PubMed]
  27. G. Taurand, P. Giaccari, J.-D. Deschênes, and J. Genest, “Time-domain optical reflectometry measurements using a frequency comb interferometer,” Appl. Opt.49(23), 4413–4419 (2010). [CrossRef] [PubMed]
  28. S. Kray, F. Spöler, M. Först, and H. Kurz, “Dual femtosecond laser multiheterodyne optical coherence tomography,” Opt. Lett.33(18), 2092–2094 (2008). [CrossRef] [PubMed]
  29. S. Kray, F. Spöler, T. Hellerer, and H. Kurz, “Electronically controlled coherent linear optical sampling for optical coherence tomography,” Opt. Express18(10), 9976–9990 (2010). [CrossRef] [PubMed]
  30. G. Sucha, M. E. Fermann, D. J. Harter, and M. Hofer, “A new method for rapid temporal scanning of ultrafast lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 605–621 (1996). [CrossRef]
  31. T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express18(2), 1613–1617 (2010). [CrossRef] [PubMed]
  32. R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, “Terahertz spectrometer operation by laser repetition frequency tuning,” J. Opt. Soc. Am. B28(4), 592–595 (2011). [CrossRef]
  33. S. Potvin, S. Boudreau, J.-D. Deschênes, and J. Genest, “Fully referenced single-comb interferometry using optical sampling by laser-cavity tuning,” Appl. Opt.52(2), 248–255 (2013). [CrossRef] [PubMed]
  34. W.-D. Joo, J. Park, S. Kim, S. Kim, Y. Kim, S.-W. Kim, and Y.-J. Kim, “Phase-shifting interferometry for large-sized surface measurements by sweeping the repetition rate of femtosecond light pulses,” Int. J. Precis. Eng. Manuf.14(2), 241–246 (2013). [CrossRef]
  35. J. You, Y.-J. Kim, and S.-W. Kim, “GPU-accelerated white-light scanning interferometer for large-area, high-speed surface profile measurements,” Int. J. Nanom.8(1/2), 31–39 (2012). [CrossRef]
  36. I.-B. Kong and S.-W. Kim, “General algorithm of phase-shifting interferometry by iterative least-squares fitting,” Opt. Eng.34(1), 183–188 (1995). [CrossRef]
  37. K. Kuijken, R. Bender, E. Cappellaro, B. Muschielok, A. Baruffolo, E. Cascone, O. Iwert, W. Mitsch, H. Nicklas, E. A. Valentijn, D. Baade, K. G. Begeman, A. Bortolussi, D. Boxhoorn, F. Christen, E. R. Deul, C. Geimer, L. Greggio, R. Harke, R. Häfner, G. Hess, H.-J. Hess, U. Hopp, I. Ilijevski, G. Klink, H. Kravcar, J. L. Lizon, C. E. Magagna, Ph. Müller, R. Niemeczek, L. de Pizzol, H. Poschmann, K. Reif, R. Rengelink, J. Reyes, A. Silber, and W. Wellem, “OmegaCAM: the 16k×16k CCD camera for the VLT survey telescope,” The Messenger110, 15–18 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited