OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15335–15349

Design optimization of spasers considering the degeneracy of excited plasmon modes

Chanaka Rupasinghe, Ivan D. Rukhlenko, and Malin Premaratne  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 15335-15349 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1047 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We model spaser as an n-level quantum system and study a spasing geometry comprising of a metal nanosphere resonantly coupled to a semiconductor quantum dot (QD). The localized surface plasmons are assumed to be generated at the nanosphere due to the energy relaxation of the optically excited electron-hole pairs inside the QD. We analyze the total system, which is formed by hybridizing spaser’s electronic and plasmonic subsystems, using the density matrix formalism, and then derive an analytic expression for the plasmon excitation rate. Here, the QD with three nondegenerate states interacts with a single plasmon mode of arbitrary degeneracy with respect to angular momentum projection. The derived expression is analyzed, in order to optimize the performance of a spaser operating at the triple-degenerate dipole mode by appropriately choosing the geometric parameters of the spaser. Our method is applicable to different resonator geometries and may prove useful in the design of QD-powered spasers.

© 2013 OSA

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(230.0230) Optical devices : Optical devices
(250.5403) Optoelectronics : Plasmonics
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Optics at Surfaces

Original Manuscript: May 8, 2013
Revised Manuscript: June 12, 2013
Manuscript Accepted: June 12, 2013
Published: June 19, 2013

Chanaka Rupasinghe, Ivan D. Rukhlenko, and Malin Premaratne, "Design optimization of spasers considering the degeneracy of excited plasmon modes," Opt. Express 21, 15335-15349 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Premaratne and G. P. Agrawal, Light Propagation in Gain Media: Optical Amplifiers(Cambridge University, 2011). [CrossRef]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photon.4, 83–91 (2010). [CrossRef]
  3. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98, 011101 (2005). [CrossRef]
  4. S. Maier, Plasmonics: Fundamentals and Applications(Springer, 2007).
  5. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90, 027402 (2003). [CrossRef] [PubMed]
  6. R. F. Oulton, “Plasmonics: Loss and gain,” Nature Photon.6, 219–221 (2012). [CrossRef]
  7. M. I. Stockman, “Spasers explained,” Nature Photon.2, 327–329 (2008). [CrossRef]
  8. J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett.94, 177401 (2005). [CrossRef] [PubMed]
  9. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1112 (2009). [CrossRef] [PubMed]
  10. R. A. Flynn, C. S. Kim, I. Vurgaftman, M. Kim, J. R. Meyer, A. J. Mäkinen, K. Bussmann, L. Cheng, F. S. Choa, and J. P. Long, “A room-temperature semiconductor spaser operating near 1.5 μm,” Opt. Express19, 8954–8961 (2011). [CrossRef] [PubMed]
  11. N. Zheludev, S. Prosvirnin, N. Papasimakis, and V. Fedotov, “Lasing spaser,” Nature Photon.2, 351–354 (2008). [CrossRef]
  12. S. W. Chang, C. Y. A. Ni, and S. L. Chuang, “Theory for bowtie plasmonic nanolasers,” Opt. Express16, 10580–10595 (2008). [CrossRef] [PubMed]
  13. A. Lisyansky, I. Nechepurenko, A. Dorofeenko, A. Vinogradov, and A. Pukhov, “Channel spaser: Coherent excitation of one-dimensional plasmons from quantum dots located along a linear channel,” Phys. Rev. B84, 153409 (2011). [CrossRef]
  14. M. Grundmann, J. Christen, N. N. Ledentsov, J. Böhrer, D. Bimberg, S. S. Ruvimov, P. Werner, U. Richter, U. Gösele, J. Heydenreich, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, P. S. Kop’ev, and Z. I. Alferov, “Ultra-narrow luminescence lines from single quantum dots,” Phys. Rev. Lett.74, 4043–4046 (1995). [CrossRef] [PubMed]
  15. S. Mukamel, Principles of Nonlinear Optical Spectroscopy, Oxford series on optical sciences (Oxford University, 1999).
  16. A. V. Baranov, A. V. Fedorov, I. D. Rukhlenko, and Y. Masumoto, “Intraband carrier relaxation in quantum dots embedded in doped heterostructures,” Phys. Rev. B68, 205318 (2003). [CrossRef]
  17. A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, T. S. Perova, and K. Berwick, “Quantum dot energy relaxation mediated by plasmon emission in doped covalent semiconductor heterostructures,” Phys. Rev. B76, 045332 (2007). [CrossRef]
  18. M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt.12, 024004 (2010). [CrossRef]
  19. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19, 22029–22106 (2011). [CrossRef] [PubMed]
  20. I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O‘reilly, “Dipole nanolaser,” Phys. Rev. A71, 063812 (2005). [CrossRef]
  21. J. B. Khurgin and G. Sun, “Injection pumped single mode surface plasmon generators: threshold, linewidth, and coherence,” Opt. Express20, 15309–15325 (2012). [CrossRef] [PubMed]
  22. J. B. Khurgin and G. Sun, “How small can nano be in a nanolaser?” Nanophotonics1, 3–8 (2012). [CrossRef]
  23. E. Andrianov, A. Pukhov, A. Dorofeenko, A. Vinogradov, and A. Lisyansky, “Dipole response of spaser on an external optical wave,” Opt. Lett.36, 4302–4304 (2011). [CrossRef] [PubMed]
  24. E. Andrianov, A. Pukhov, A. Dorofeenko, A. Vinogradov, and A. Lisyansky, “Forced synchronization of spaser by an external optical wave,” Opt. Express19, 24849–24857 (2011). [CrossRef]
  25. E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Rabi oscillations in spasers during nonradiative plasmon excitation,” Phys. Rev. B85, 035405 (2012). [CrossRef]
  26. A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the fano effect on photon statistics,” Phys. Rev. Lett.105, 263601 (2010). [CrossRef]
  27. A. Rosenthal and T. Ghannam, “Dipole nanolasers: A study of their quantum properties,” Phys. Rev. A79, 043824 (2009). [CrossRef]
  28. A. K. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B75, 085436 (2007). [CrossRef]
  29. M. Wegener, J. L. García-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express16, 19785–19798 (2008). [CrossRef] [PubMed]
  30. S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett.105, 127401 (2010). [CrossRef] [PubMed]
  31. A. Fang, T. Koschny, and C. M. Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt.12, 024013 (2010). [CrossRef]
  32. D. Sarid and W. Challener, Modern Introduction to Surface Plasmons: Theory, Mathematica Modeling, and Applications(Cambridge University, 2010). [CrossRef]
  33. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B110, 7238–7248 (2006). [CrossRef] [PubMed]
  34. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107, 668–677 (2003). [CrossRef]
  35. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys.22, 1242–1246 (1951). [CrossRef]
  36. C. Bohren and D. Huffman, Absorption and scattering of light by small particles(Wiley, 1983).
  37. E. Sondheimer, “The mean free path of electrons in metals,” Adv. Phys.1, 1–42 (1952). [CrossRef]
  38. M. I. Stockman, “Nanoplasmonics: The physics behind the applications,” Phys. Today64, 39–44 (2011). [CrossRef]
  39. J. B. Khurgin, G. Sun, and R. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett.94, 071103–071103 (2009). [CrossRef]
  40. J. B. Khurgin, G. Sun, and R. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett.93, 021120–021120 (2008). [CrossRef]
  41. I. D. Rukhlenko, D. Handapangoda, M. Premaratne, A. V. Fedorov, A. V. Baranov, and C. Jagadish, “Spontaneous emission of guided polaritons by quantum dot coupled to metallic nanowire: Beyond the dipole approximation,” Opt. Express17, 17570–17581 (2009). [CrossRef] [PubMed]
  42. L. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics Vol 8: Electrodynamics of Continuous Media (Elsevier, 2004).
  43. M. Ventra, S. Evoy, and J. Heflin, Introduction to Nanoscale Science and Technology, Nanostructure Science and Technology (Springer, 2004). [CrossRef]
  44. A. Fedorov, A. Baranov, and Y. Masumoto, “Coherent control of optical-phonon-assisted resonance secondary emission in semiconductor quantum dots,” Opt. Spectrosc.93, 52–60 (2002). [CrossRef]
  45. I. Rukhlenko, A. Fedorov, A. Baymuratov, and M. Premaratne, “Theory of quasi-elastic secondary emission from a quantum dot in the regime of vibrational resonance,” Opt. Express19, 15459–15482 (2011). [CrossRef] [PubMed]
  46. A. Fedorov and I. Rukhlenko, “Study of electronic dynamics of quantum dots using resonant photoluminescence technique,” Opt. Spectrosc.100, 716–723 (2006). [CrossRef]
  47. A. Ansel’m, Introduction to Semiconductor Theory (Mir, 1981).
  48. D. Bimberg, R. Blachnik, P. Dean, T. Grave, G. Harbeke, K. Hübner, U. Kaufmann, W. Kress, O. Madelung, and , Physics of Group IV Elements and III–V Compounds / Physik der Elemente der IV. Gruppe und der III–V Verbindungen, v. 17 (Springer, 1981).
  49. U. Fano, “Description of states in quantum mechanics by density matrix and operator techniques,” Rev. Mod. Phys.29, 74–93 (1957). [CrossRef]
  50. K. Blum, Density Matrix Theory and Applications(Springer, 2010).
  51. F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett.97, 206806 (2006). [CrossRef] [PubMed]
  52. G. Sun, J. B. Khurgin, and C. Yang, “Impact of high-order surface plasmon modes of metal nanoparticles on enhancement of optical emission,” Appl. Phys. Lett.95, 171103–171103 (2009). [CrossRef]
  53. J. Lim, A. Eggeman, F. Lanni, R. D. Tilton, and S. A. Majetich, “Synthesis and single-particle optical detection of low-polydispersity plasmonic-superparamagnetic nanoparticles,” Adv. Mater.20, 1721–1726 (2008). [CrossRef]
  54. R. Averitt, S. Westcott, and N. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B16, 1824–1832 (1999). [CrossRef]
  55. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  56. K. Kolwas, A. Derkachova, and M. Shopa, “Size characteristics of surface plasmons and their manifestation in scattering properties of metal particles,” J. Quant. Spectrosc. Radiat. Transfer110, 1490–1501 (2009). [CrossRef]
  57. L. Liu, Q. Peng, and Y. Li, “An effective oxidation route to blue emission cdse quantum dots,” Inorg. Chem.47, 3182–3187 (2008). [CrossRef] [PubMed]
  58. W. Kwak, T. Kim, W. Chae, and Y. Sung, “Tuning the energy bandgap of CdSe nanocrystals via Mg doping,” Nanotechnology18, 205702 (2007). [CrossRef]
  59. I. E. Protsenko, “Quantum theory of dipole nanolasers,” J. Russ. Laser Res.33, 559–577 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited