OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15350–15363

Sensitivity optimization of the one beam Z-scan technique and a Z-scan technique immune to nonlinear absorption

José A. Dávila Pintle, Edmundo Reynoso Lara, and Marcelo D. Iturbe Castillo  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 15350-15363 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1178 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is presented a criteria for selecting the optimum aperture radius for the one beam Z-scan technique (OBZT), based on the analysis of the transmittance of the aperture. It is also presented a modification to the OBZT by directly measuring the beam radius in the far field with a rotating disk, which allows to determine simultaneously the non-linear absorptive coefficient and non-linear refractive index, much less sensitive to wave front distortions caused by inhomogeneities of the sample with a negligible loss of signal to noise ratio. It is demonstrated its equivalence to the OBZT.

© 2013 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter

ToC Category:
Nonlinear Optics

Original Manuscript: January 29, 2013
Revised Manuscript: March 4, 2013
Manuscript Accepted: March 11, 2013
Published: June 20, 2013

José A. Dávila Pintle, Edmundo Reynoso Lara, and Marcelo D. Iturbe Castillo, "Sensitivity optimization of the one beam Z-scan technique and a Z-scan technique immune to nonlinear absorption," Opt. Express 21, 15350-15363 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quant. Electron.26(4), 760–769 (1990). [CrossRef]
  2. J. Wang, B. Gu, Y. M. Xu, and H. T. Wang, “Enhanced sensitivity of Z-scan technique by use of flat-topped beam,” Appl. Phys. B95(4), 773778 (2009). [CrossRef]
  3. T. Xia, D. J. Hagan, M. Sheik Bahae, and E. Van Stryland, “Eclipsing Z-scan measurement of λ/104 wave-front distortion,” Opt. Lett.19(5), 317–319 (1994). [CrossRef] [PubMed]
  4. G. Tsigaridas, M. Fakis, I. Polyzos, P. Persephonis, and V. Giannetas, “Z-scan technique through beam radius measurements,” Appl. Phys. B76(1), 83–86 (2003). [CrossRef]
  5. P. B. Chapple, J. Staromlynska, J. A. Hermann, T. J. Mckay, and R. G. Mcduff, “Single-beam Z-scan: Measurement techniques and analysis,” J. Nonlinear Opt. Phys. Mater6(3), 251–293 (1997). [CrossRef]
  6. I. A. Ryasnyansky and B. Palpant, “Theoretical Investigation of the off-axis z-scan technique for nonlinear optical refraction measurement,” Appl. Opt.45(12), 2773–2776 (2006). [CrossRef] [PubMed]
  7. R. L. McCally, “Measurement of Gaussian beam parameters,” Appl. Opt.23(14), 2227–2227 (1984). [CrossRef] [PubMed]
  8. P. B. Chapple, “Beam waist and M2 measurement using a finite slit,” Opt. Eng.33(7), 2461–2466 (1994). [CrossRef]
  9. P. J. Shayler, “Laser beam distribution in the focal region,” Appl. Opt.17(17), 2673–2674 (1978). [CrossRef] [PubMed]
  10. S. Nemoto, “Determination of waist parameters of a Gaussian beam,” Appl. Opt.21(21), 3859–3863 (1986). [CrossRef]
  11. J. M. Khosrofian and B. A. Garetz, “Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data,” Appl. Opt.22(21), 3406–3410 (1983). [CrossRef] [PubMed]
  12. J. A. Arnaud, W. M. Hubbard, G. D. Mandeville, B. delaClaviére, E. A. Franke, and J. M. Franke, “Technique for fast measurement of Gaussian laser beam parameters,” Appl. Opt.10(12), 2775–2776 (1971). [CrossRef] [PubMed]
  13. Y. Suzaki and A. Tachibana, “Measurement of the μm sized radius of Gaussian laser beam using the scanning knife-edge,” Appl. Opt.14(12), 2809–2810 (1975). [CrossRef] [PubMed]
  14. A. Nag, A. Kumar De, and D. Goswami, “Two-photon cross-section measurements using an optical chopper: z-scan and two-photon fluorescence schemes,” J. Phys. B: At. Mol. Opt. Phys.42(6), 065103, (2009). [CrossRef]
  15. I. Bhattacharyya, S. Priyadarshi, and D. Goswami, “Molecular structure-property correlations from optical nonlinearity and thermal-relaxation dynamics,” Chem. Phys. Lett.469, 104–109, (2009). [CrossRef] [PubMed]
  16. A. Rogalski and Z. Bielecki, “Detection of optical radiation,” Bull. Pol. Ac.: Tech.52(1), 43–66 (2004).
  17. C. D. Motchenbacher and J. A. Connelly, Low-noise Electronic System Design (John Wiley & Sons Inc, 1993).
  18. J. Phillips and K. Kundert, “Noise in mixers, oscillators, samplers, and logic an introduction to cyclostationary noise,” Proceedings of the IEEE custom integrated circuits conference, 431–439, (2000).
  19. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons Inc, 1991). [CrossRef]
  20. X. Liu, S. Guo, H. Wang, N. Ming, and L. Hou, “Investigation of the influence of finite aperture size on the Z-scan transmittance curve,” J. Nonlinear Opt. Phys. Mater.10(4), 431–439 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited