OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15389–15394

Group delay of electromagnetic pulses through multilayer dielectric mirrors combined with gravitational wave

J. T. Liu, X. Wu, N. H. Liu, J. Li, and F. H. Su  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 15389-15394 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (868 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Group delay of electromagnetic pulses through multilayer dielectric mirrors (MDM) combined with gravitational wave (GW) is investigated. Unlike in traditional quantum tunneling, the group delay of a transmitted wave packet irradiated by a GW increases linearly with MDM length. This peculiar tunneling effect can be attributed to electromagnetic wave leakage in a time-dependent photonic bandgap caused by the GW. In particular, we find that the group delay of the tunneling photons is sensitive to GW. Our study provides insight into the nature of the quantum tunnelling as well as a novel process by which to detect the GW.

© 2013 OSA

OCIS Codes
(320.7120) Ultrafast optics : Ultrafast phenomena
(350.1260) Other areas of optics : Astronomical optics
(350.5500) Other areas of optics : Propagation

ToC Category:
Physical Optics

Original Manuscript: March 28, 2013
Revised Manuscript: June 11, 2013
Manuscript Accepted: June 14, 2013
Published: June 20, 2013

J. T. Liu, X. Wu, N. H. Liu, J. Li, and F. H. Su, "Group delay of electromagnetic pulses through multilayer dielectric mirrors combined with gravitational wave," Opt. Express 21, 15389-15394 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. U. Condon and P. M. Morse, “Quantum mechanics of collision processes I. Scattering of particles in a definite force field,” Rev. Mod. Phys.3, 43–88 (1931). [CrossRef]
  2. L. A. MacColl, “Note on the transmission and reflection of wave packets by potential barriers,” Phys. Rev.40, 621–626 (1932). [CrossRef]
  3. T. E. Hartman, “Tunneling of a wave packet,” J. Appl. Phys.33, 3427–3433 (1962). [CrossRef]
  4. R. Landauer and T. Martin, “Barrier interaction time in tunneling,” Rev. Mod. Phys.66, 217–228 (1994). [CrossRef]
  5. H. G. Winful, “Tunneling time, the Hartman effect, and superluminality: A proposed resolution of an old paradox,” Phys. Rep.436, 1–69 (2006). [CrossRef]
  6. Ph. Balcou and L. Dutriaux, “Dual optical tunneling times in frustrated total internal reflection,” Phys. Rev. Lett.78, 851–854 (1997). [CrossRef]
  7. D. J. Papoular, P. Clade, S. V. Polyakov, C. F. McCormick, A. L. Migdall, and P. D. Lett, “Measuring optical tunneling times using a Hong-Ou-Mandel interferometer,” Optics Express16, 16005–16012 (2008). [CrossRef] [PubMed]
  8. D. Shafir, H. Soifer, B. D. Bruner, M. Dagan, Y. Mairesse, S. Patchkovskii, M. Yu. Ivanov, O. Smirnova, and Nirit Dudovich, “Resolving the time when an electron exits a tunnelling barrier,” Nature485, 343–346 (2012). [CrossRef] [PubMed]
  9. A. I. Baz’, “Lifetime of intermediate states,” Sov.J. Nucl. Phys.4, 182–188(1967).
  10. V. Rybachenko, “Time penetration of a particle through a potential barrier,” Sov.J. Nucl. Phys.5, 635–639 (1967).
  11. M. Büttiker and R. Landauer, “Traversal time for tunneling,” Phys. Rev. Lett.49, 1739–1742 (1982). [CrossRef]
  12. H. G. Winful, “Delay time and the Hartman effect in quantum tunneling,” Phys. Rev. Lett.91, 260401 (2003). [CrossRef]
  13. P. Krekora, Q. Su, and R. Grobe, “Effects of relativity on the time-resolved tunneling of electron wave packets,” Phys. Rev. A63, 032107 (2001). [CrossRef]
  14. J. T. Liu, F. H. Su, H. Wang, and X. H. Deng, “Optical field modulation on the group delay of chiral tunneling in graphene,” New J. Phys.14, 013012 (2012). [CrossRef]
  15. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “R. Y. Measurement of the single-photon tunneling time,” Phys. Rev. Lett.71, 708–711 (1993). [CrossRef] [PubMed]
  16. Ch. Spielmann, R. Szipöcs, A. Stingl, and F. Krausz, “Tunneling of Optical Pulses through Photonic Band Gaps,” Phys. Rev. Lett.73, 2308–2311 (1994). [CrossRef] [PubMed]
  17. L. G. Wang, N. H. Liu, Q. Lin, and S. Y. Zhu, “Superluminal propagation of light pulses: A result of interference,” Phys. Rev. E68, 066606 (2003). [CrossRef]
  18. J. J. Carey, J. Zawadzka, D. A. Jaroszynski, and K. Wynne, “Noncausal time response in frustrated total internal reflection,” Phys. Rev. Lett.84, 1431–1434 (2000). [CrossRef] [PubMed]
  19. C. F. Li, “Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects,” Phys. Rev. Lett.91, 133903 (2003). [CrossRef] [PubMed]
  20. A. Einstein, “Die Grundlage der allgemeinen Relativitätstheorie,” Ann. Phys.49, 769–822 (1916). [CrossRef]
  21. J. M. Weisberg and J. H. Taylor, “The Relativistic Binary Pulsar B1913+16,” inRadio Pulsars, ASP Conf. Ser. 302, M. Bailes, D. J. Nice, and S. E. Thorsett, ed. (Chania, 2003) pp. 93–98.
  22. P. Aufmuth and K. Danzmann, “Gravitational wave detectors,” New J. Phys.7, 202 (2005). [CrossRef]
  23. G. M. Harry, for the LIGO scientific collaboration , “Advanced LIGO: the next generation of gravitational wave detectors,” Class. Quantum Grav.27, 084006 (2010). [CrossRef]
  24. B. Willke, for the GEO collaboration, “The GEO-HF project,” Class. Quantum Grav.23, S207–S214 (2006). [CrossRef]
  25. The Virgo collaboration, “Status of the Virgo project,” Class. Quantum Grav.28, 114002 (2011).
  26. J. Weber, “Detection and generation of gravitational waves,” Phys. Rev.117, 306–313 (1960). [CrossRef]
  27. R. Weiss, “Electromagnetically Coupled Broadband Gravitational Antenna,” Quarterly Progress Report, Research Laboratory of Electronics, MIT10554 (1972).
  28. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas and Propag.14, 302–307 (1966). [CrossRef]
  29. J. R. Zurita-Sánchez, J. H. Abundis-Patiño, and P. Halevi, “Pulse propagation through a slab with time-periodic dielectric function ε(t),” Opt Express20, 5586–5600 (2012). [CrossRef]
  30. J. G. Bellido and D. G. Figueroa, “Stochastic background of gravitational waves from hybrid preheating,” Phys. Rev. Lett.98, 061302 (2007). [CrossRef]
  31. A. Rotti and T. Souradeep, “New window into stochastic gravitational wave background,” Phys. Rev. Lett.109, 221301 (2012). [CrossRef]
  32. V. Mandic, E. Thrane, S. Giampanis, and T. Regimbau, “Parameter estimation in searches for the stochastic gravitational-wave background,” Phys. Rev. Lett.109, 171102 (2012). [CrossRef] [PubMed]
  33. S. Y. Zhong, X. Wu, S. Q. Liu, and X. F. Deng, “Global symplectic structure-preserving integrators for spinning compact binaries,” Phys. Rev. D82, 124040 (2010). [CrossRef]
  34. S. W. Hawking and W. Israel, General Relativity, an Einstein Centenary Survey (Cambridge, 1976).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited