OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15401–15408

Intrinsic linewidth of the plasmonic resonance in a micrometric metal mesh

L. Baldassarre, M. Ortolani, A. Nucara, P. Maselli, A. Di Gaspare, V. Giliberti, and P. Calvani  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15401-15408 (2013)
http://dx.doi.org/10.1364/OE.21.015401


View Full Text Article

Enhanced HTML    Acrobat PDF (1152 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The intrinsic linewidth and angular dispersion of Surface Plasmon Polariton resonance of a micrometric metal mesh have been measured with a collimated mid-infrared beam, provided by an External Cavity tunable Quantum Cascade Laser. We show that the use of a collimated beam yields an observed resonance linewidth γ = 12 cm−1 at the resonance frequency ν0 = 1658 cm−1, better by an order of magnitude than with a non-collimated beam. The extremely narrow plasmon resonance attained by our mesh is then exploited to reconstruct, by varying the QCL angle of incidence θ, the angular intensity distribution f(θ) of a globar at the focal plane of a conventional imaging setup. We thus show that f(θ) is better reproduced by a Gaussian distribution than by a uniform one, in agreement with ray-tracing simulation.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3060) Physical optics : Infrared
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 11, 2013
Revised Manuscript: May 17, 2013
Manuscript Accepted: May 24, 2013
Published: June 20, 2013

Citation
L. Baldassarre, M. Ortolani, A. Nucara, P. Maselli, A. Di Gaspare, V. Giliberti, and P. Calvani, "Intrinsic linewidth of the plasmonic resonance in a micrometric metal mesh," Opt. Express 21, 15401-15408 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-15401


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. G. Rodrigo, L. Martn-Moreno, A. Yu. Nikitin, A. V. Kats, I. S. Spevak, and F. J. Garca-Vidal, “Extraordinary optical transmission through hole arrays in optically thin metal films,” Opt. Lett.34(1), 4–6 (2009). [CrossRef]
  2. F. de Len-Prez, G. Brucoli, F. J. Garca-Vidal, and L. Martn-Moreno, “Theory on the scattering of light and surface plasmon polariton by arrays of holes and dimples in a metal film,” New. J. Phys.10, 105017 (2008) [CrossRef]
  3. A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10, 4962–4969, (2010). [CrossRef]
  4. J. V. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, “Metal films with arrays of tiny holes: spectroscopy with infrared plasmonic scaffolding,” J. Phys. Chem. C111, 17459–17472 (2007). [CrossRef]
  5. E. Verhagen, L. Kuipers, and A. Polman, “Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence,” Opt. Express17(17) 14586 (2009). [CrossRef] [PubMed]
  6. D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Midinfrared doping-tunable extraordinary transmission from subwavelength gratings,” Appl. Phys. Lett.90, 191102 (2007). [CrossRef]
  7. D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolski, and D. Wasserman, “Plasmonic mid-infrared beam steering,” Appl. Phys. Lett.96, 201112 (2010). [CrossRef]
  8. J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys.72, 064401 (2009). [CrossRef]
  9. T. Ganz, H. G. von Ribbeck, D. W. van der Weide, and F. Keilmann, “Vector frequency-comb Fourier-transform spectroscopy for characterizing metamaterials,” New J. Phys.10, 123007 (2008). [CrossRef]
  10. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11, 69–75 (2011). [CrossRef] [PubMed]
  11. I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano5, 8167–8174 (2011) [CrossRef] [PubMed]
  12. K. R. Rodriguez, H. Tian, J. M. Heer, and J. V. Coe, “Extraordinary Infrared transmission resonances of metal microarrays for sensing nanocoating thickness,” J. Phys. Chem. C111, 12111, (2007). [CrossRef]
  13. O. Limaj, S. Lupi, F. Mattioli, R. Leoni, and M. Ortolani, “Mid-Infrared surface plasmon sensor based on a substrateless metal mesh,” Appl. Phys. Lett.98, 091902 (2011). [CrossRef]
  14. J. M. Heer and J. V. Coe, “3D-FDTD modeling of angular spread for the extraordinary transmission spectra of metal films with arrays of subwavelength holes,” Plasmonics7, 71–75 (2012). [CrossRef]
  15. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garca-Etxarri, and J. Aixpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 157403 (2008). [CrossRef] [PubMed]
  16. M. A. Malone, K. E. Cilwa, M. McCormack, and J. V. Coe, “Modifying an infrared microscope to characterize propagating surface plasmon polariton-mediated resonances,” J. Phys. Chem.115, 12250–12254 (2011).
  17. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998). [CrossRef]
  18. H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58, 6779 (1998). [CrossRef]
  19. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett.92, 107401 (2004). [CrossRef] [PubMed]
  20. M. G. Salt and W. L. Barnes, “Photonic band gaps in guided modes of textured metallic microcavities,” Opt. Commun.166, 151 (1999). [CrossRef]
  21. A. A. Yanik, A. E. Cetin, M. Huang, Artar Alp, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci.108, 11784–11789 (2011). [CrossRef] [PubMed]
  22. T. Ribaudo, D. C. Adams, B. Passmore, E. A. Shaner, and D. Wasserman, “Spectral and spatial investigation of midinfrared surface waves on a plasmonic grating,” Appl. Phys. Lett.94, 201109 (2009). [CrossRef]
  23. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007)
  24. J. Etou, D. Ino, D. Furukawa, K. Watanabe, I.F. Nakai, and Y. Matsumoto, “Mechanism of enhancement in absorbance of vibrational bands of adsorbates at a metal mesh with subwavelength hole arrays,” Phys. Chem. Chem. Phys.13, 5817–5823 (2011). [CrossRef] [PubMed]
  25. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  26. O. Svelto, Principles of Lasers, 4th Ed. (Plenum, 1998). [CrossRef]
  27. F. Cerrina and M. Sanchez del Rio, “Ray tracing of X-Ray optical systems,” in Handbook of Optics3rd ed., (Mc Graw Hill, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited