OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15409–15417

Estimating modal instability threshold for photonic crystal rod fiber amplifiers

Mette Marie Johansen, Kristian Rymann Hansen, Marko Laurila, Thomas Tanggaard Alkeskjold, and Jesper Lægsgaard  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15409-15417 (2013)
http://dx.doi.org/10.1364/OE.21.015409


View Full Text Article

Acrobat PDF (2511 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a semi-analytic numerical model to estimate the transverse modal instability (TMI) threshold for photonic crystal rod amplifiers. The model includes thermally induced waveguide perturbations in the fiber cross section modeled with finite element simulations, and the relative intensity noise (RIN) of the seed laser, which seeds mode coupling between the fundamental and higher order mode. The TMI threshold is predicted to ~370 W – 440 W depending on RIN for the distributed modal filtering rod fiber.

© 2013 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(140.6810) Lasers and laser optics : Thermal effects
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 17, 2013
Revised Manuscript: June 13, 2013
Manuscript Accepted: June 13, 2013
Published: June 20, 2013

Citation
Mette Marie Johansen, Kristian Rymann Hansen, Marko Laurila, Thomas Tanggaard Alkeskjold, and Jesper Lægsgaard, "Estimating modal instability threshold for photonic crystal rod fiber amplifiers," Opt. Express 21, 15409-15417 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-15409


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B27(11), B63–B92 (2010). [CrossRef]
  2. T. T. Alkeskjold, M. Laurila, L. Scolari, and J. Broeng, “Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier,” Opt. Express19(8), 7398–7409 (2011). [CrossRef] [PubMed]
  3. F. Jansen, F. Stutzki, H.-J. Otto, M. Baumgartl, C. Jauregui, J. Limpert, and A. Tünnermann, “The influence of index-depressions in core-pumped Yb-doped large pitch fibers,” Opt. Express18(26), 26834–26842 (2010). [CrossRef] [PubMed]
  4. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express19(11), 10180–10192 (2011). [CrossRef] [PubMed]
  5. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express19(14), 13218–13224 (2011). [CrossRef] [PubMed]
  6. B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express20(10), 11407–11422 (2012). [CrossRef] [PubMed]
  7. C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express19(4), 3258–3271 (2011). [CrossRef] [PubMed]
  8. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermally induced mode coupling in rare-earth doped fiber amplifiers,” Opt. Lett.37(12), 2382–2384 (2012). [CrossRef] [PubMed]
  9. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Theoretical analysis of mode instability in high-power fiber amplifiers,” Opt. Express21(2), 1944–1971 (2013). [CrossRef] [PubMed]
  10. E. Coscelli, F. Poli, T. T. Alkeskjold, M. M. Jørgensen, L. Leick, J. Broeng, A. Cucinotta, and S. Selleri, “Thermal Effects on the Single-Mode Regime of Distributed Modal Filtering Rod Fiber,” J. Lightwave Technol.30(22), 3494–3499 (2012). [CrossRef]
  11. D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” J. Quant. Electron.37(2), 207–217 (2001). [CrossRef]
  12. M.-A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J.-N. Maran, “Thermal effects in high power cw fiber lasers,” Proc. SPIE7195, 71951U, 71951U-11 (2009). [CrossRef]
  13. J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot, and A. Tünnermann, “Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation,” Opt. Express11(22), 2982–2990 (2003). [CrossRef] [PubMed]
  14. Comsol, “Products,” < http://www.comsol.com/products/multiphysics/ > (2 January 2013).
  15. M. M. Jørgensen, S. R. Petersen, M. Laurila, J. Lægsgaard, and T. T. Alkeskjold, “Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier,” Opt. Express20(7), 7263–7273 (2012). [CrossRef] [PubMed]
  16. M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express20(5), 5742–5753 (2012). [CrossRef] [PubMed]
  17. F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett.36(23), 4572–4574 (2011). [CrossRef] [PubMed]
  18. H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express20(14), 15710–15722 (2012). [CrossRef] [PubMed]
  19. A. V. Smith and J. J. Smith, “Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers,” Opt. Express20(22), 24545–24558 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited